Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Banakh T. O."'
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 4, Iss 1, Pp 4-11 (2012)
We prove that a monomorphic functor $F:CompoComp$ with finite supports isepimorphic, continuous,and its maximal $emptyset$-modification $F^circ$ preserves intersections. Thisimplies that a monomorphic functor $F:CompoComp$ of finite degree $deg Flen$
Externí odkaz:
https://doaj.org/article/7a00fa389f2148508c64201e7b2277f1
We define the scattered subsets of a group as asymptotic counterparts of scattered subspaces of a topological space, and prove that a subset $A$ of a group $G$ is scattered if and only if $A$ contains no piecewise shifted $IP$-subsets. For an amenabl
Externí odkaz:
http://arxiv.org/abs/1312.6946
Publikováno v:
Electronic Journal of Combinatorics. 19 (2012), #P12
Let $G$ be a group and $X$ be a $G$-space. A subset $F$ of $X$ is called a kaleidoscopical configuration if there exists a surjective coloring $\chi:X\to Y$ such that the restriction of $\chi$ on each subset $gF$, $g\in G$ is a bijection. We give som
Externí odkaz:
http://arxiv.org/abs/1001.0903
Publikováno v:
J. Math. Sci.Vol.155, No.4 (2008) 475-522
In this paper we introduce and study so-called $k^*$-metrizable spaces forming a new class of generalized metric spaces, and display various applications of such spaces in topological algebra, functional analysis, and measure theory. By definition, a
Externí odkaz:
http://arxiv.org/abs/0810.3021
Autor:
BANAKH, T. O., RAVSKY, A. V.
Publikováno v:
Matematychni Studii; 2021, Vol. 56 Issue 1, p20-27, 8p
Publikováno v:
Carpathian Mathematical Publications; Vol 9, No 1 (2017); 3-5
Карпатские математические публикации; Vol 9, No 1 (2017); 3-5
Карпатські математичні публікації; Vol 9, No 1 (2017); 3-5
Карпатские математические публикации; Vol 9, No 1 (2017); 3-5
Карпатські математичні публікації; Vol 9, No 1 (2017); 3-5
According to a classical theorem of Gleason and Montgomery, every finite-dimensional locally path-connected topological group is a Lie group. In the paper for every $n\ge 2$ we construct a locally connected subgroup $G\subset{\mathbb R}^{n+1}$ of dim
Autor:
Banakh, T. O.1,2 tbanakh@yahoo.com, Maslyuchenko, O. V.3 mathan@chnu.cv.ua, Mykhaylyuk, V. V.3 vmasl@chnu.cv.ua
Publikováno v:
Real Analysis Exchange. 2006-2007, Vol. 32 Issue 2, p335-347. 13p.
Publikováno v:
Ukrainian Mathematical Journal. Sep2005, Vol. 57 Issue 9, p1371-1386. 16p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 4, Iss 1, Pp 4-11 (2013)
Karpatsʹkì Matematičnì Publìkacìï, Vol 4, Iss 1, Pp 4-11 (2012)
Karpatsʹkì Matematičnì Publìkacìï, Vol 4, Iss 1, Pp 4-11 (2012)
We prove that a monomorphic functor $F:\mathbf{Comp}\to\mathbf{Comp}$ with finite supports is epimorphic, continuous, and its maximal $\varnothing$-modification $F^\circ$ preserves intersections. This implies that a monomorphic functor $F:\mathbf{Com