Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Ban, E. P. van den"'
Autor:
Ban, E. P. van den
We study Whittaker vectors (and Jacquet integrals) in the generalized principal series for a real reductive group. A functional equation for them is obtained. This allows to establish uniform estimates for their holomorphic extensions with respect to
Externí odkaz:
http://arxiv.org/abs/2304.11044
Autor:
Ban, E. P. van den, Souaifi, S.
In this paper we make a detailed comparison between the Paley-Wiener theorems of J. Arthur and P. Delorme. We prove that these theorems are equivalent from an a priori point of view. We also give an alternative formulation of the theorems in terms of
Externí odkaz:
http://arxiv.org/abs/1111.3973
Autor:
Ban, E. P. van den, Schlichtkrull, H.
Let G/H be a reductive symmetric space and K a maximal compact subgroup of G. We study Fourier transforms of compactly supported K-finite distributions on G/H and characterize the image of the space of such distributions.
Comment: TeX, 21 pages
Comment: TeX, 21 pages
Externí odkaz:
http://arxiv.org/abs/math/0511585
Autor:
Ban, E. P. van den, Schlichtkrull, H.
We show that Arthur's Paley-Wiener theorem for K-finite compactly supported smooth functions on a real reductive Lie group G of the Harish-Chandra class can be deduced from the Paley-Wiener theorem we established in the more general setting of a redu
Externí odkaz:
http://arxiv.org/abs/math/0411363
Autor:
Ban, E. P. van den
I give a survey of joint work with Henrik Schlichtkrull on the induction of certain relations among (partial) Eisenstein integrals for the minimal principal series of a reductive symmetric space. I explain the application of this principle of inducti
Externí odkaz:
http://arxiv.org/abs/math/0304188
Autor:
Ban, E. P. van den, Schlichtkrull, H.
Publikováno v:
Ann. of Math. (2) 164 (2006), no. 3, 879--909
Let X = G/H be a reductive symmetric space and K a maximal compact subgroup of G. The image under the Fourier transform of the space of K-finite compactly supported smooth functions on X is characterized.
Comment: 31 pages, published version
Comment: 31 pages, published version
Externí odkaz:
http://arxiv.org/abs/math/0302232
Autor:
Ban, E. P. van den, Schlichtkrull, H.
Publikováno v:
Inventiones Mathematicae 161 (3) 2005, 567 - 628
We obtain the Plancherel decomposition for a reductive symmetric space in the sense of representation theory. Our starting point is the Plancherel formula for spherical Schwartz functions, obtained in part I (math.RT/0107063). The formula for Schwart
Externí odkaz:
http://arxiv.org/abs/math/0111304
Autor:
Ban, E. P. van den, Schlichtkrull, H.
Publikováno v:
Inventiones Mathematicae 161 (3) 2005, 453 - 566
We prove the Plancherel formula for spherical Schwartz functions on a reductive symmetric space. Our starting point is an inversion formula for spherical smooth compactly supported functions. The latter formula was earlier obtained from the most cont
Externí odkaz:
http://arxiv.org/abs/math/0107063
Autor:
Ban, E. P. van den, Schlichtkrull, H.
Publikováno v:
Represent. Theory 5 (2001), 615--712 (electronic)
The asymptotic behavior of holomorphic families of generalized eigenfunctions on a reductive symmetric space is studied. The family parameter is a complex character on the split component of a parabolic subgroup. The main result asserts that the fami
Externí odkaz:
http://arxiv.org/abs/math/0104050