Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Baloda, Barkha"'
Autor:
Baloda, Barkha, Kumar, Jitender
Let $R$ be a ring with unity. The upper ideal relation graph $\Gamma_U(R)$ of the ring $R$ is a simple undirected graph whose vertex set is the set of all non-unit elements of $R$ and two distinct vertices $x, y$ are adjacent if and only if there exi
Externí odkaz:
http://arxiv.org/abs/2403.04266
Let $R$ be a ring with unity. The \emph{idempotent graph} $G_{\text{Id}}(R)$ of a ring $R$ is an undirected simple graph whose vertices are the set of all the elements of ring $R$ and two vertices $x$ and $y$ are adjacent if and only if $x+y$ is an i
Externí odkaz:
http://arxiv.org/abs/2306.08327
Let $R$ be a ring with unity. The cozero-divisor graph of a ring $R$ is an undirected simple graph whose vertices are the set of all non-zero and non-unit elements of $R$ and two distinct vertices $x$ and $y$ are adjacent if and only if $x \notin Ry$
Externí odkaz:
http://arxiv.org/abs/2212.12900
Let $R$ be a commutative ring with unity. The prime ideal sum graph $\text{PIS}(R)$ of the ring $R$ is the simple undirected graph whose vertex set is the set of all nonzero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacent if a
Externí odkaz:
http://arxiv.org/abs/2210.15335
Let $R$ be a ring with unity. The cozero-divisor graph of a ring $R$, denoted by $\Gamma'(R)$, is an undirected simple graph whose vertices are the set of all non-zero and non-unit elements of $R$, and two distinct vertices $x$ and $y$ are adjacent i
Externí odkaz:
http://arxiv.org/abs/2210.01570
The left-ideal relation graph on a ring $R$, denoted by $\overrightarrow{\Gamma_{l-i}}(R)$, is a directed graph whose vertex set is all the elements of $R$ and there is a directed edge from $x$ to a distinct $y$ if and only if the left ideal generate
Externí odkaz:
http://arxiv.org/abs/2201.02345
Autor:
Baloda, Barkha, Kumar, Jitender
The intersection ideal graph $\Gamma(S)$ of a semigroup $S$ is a simple undirected graph whose vertices are all nontrivial left ideals of $S$ and two distinct left ideals $I, J$ are adjacent if and only if their intersection is nontrivial. In this pa
Externí odkaz:
http://arxiv.org/abs/2201.02346
Autor:
Baloda, Barkha, Kumar, Jitender
The inclusion ideal graph $\mathcal{I}n(S)$ of a semigroup $S$ is an undirected simple graph whose vertices are all nontrivial left ideals of $S$ and two distinct left ideals $I, J$ are adjacent if and only if either $I \subset J$ or $J \subset I$. T
Externí odkaz:
http://arxiv.org/abs/2110.14194
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Baloda, Barkha1 arkha0026@gmail.com, Kumar, Jitender1 jitenderarora09@gmail.com
Publikováno v:
Quasigroups & Related Systems. 2023, Vol. 31 Issue 1, p1-20. 20p.