Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Ballico, E. (Edoardo)"'
Publikováno v:
Collectanea Mathematica; 2004: Vol.: 55 Núm.: 3; p. 269-278
We find some ranges for the $4$-tuples of integers $(d, g, n, r)$ for which there is a smooth connected non-degenerate curve of degree $d$ and genus $g$, which is $k$-normal for every $k\leq r$.
Autor:
Ballico, E. (Edoardo)
Publikováno v:
Collectanea Mathematica; 2002: Vol.: 53 Núm.: 1; p. 49-53
Let $X$ be a smooth connected projective curve of genus g defined over $\mathbb{R}$. Here we give bounds for the real gonality of $X$ in terms of the complex gonality of $X$.
Autor:
Ballico, E. (Edoardo)
Publikováno v:
Collectanea Mathematica; 1999: Vol.: 50 Núm.: 2; p. 211-220
Let $X$ be a smooth projective curve of genus $g\geq 4$. Here we show the existence for several numerical invariants $x> 0$, deg($E_i$), rank($E_i$), $1 \leq i \leq x$, deg($F$), rank($F$) of semistable vector bundles $E_i, 1\leq i\leq x, F$ on $X$ s
Autor:
Ballico, E. (Edoardo), Chiantini, Luca
Publikováno v:
Collectanea Mathematica; 1998: Vol.: 49 Núm.: 2-3; p. 191-201
We show some non-emptiness results for the Severi varieties of nodal curves with fixed geometric genus in $\textbf{P}^n, n > 2$. For $n = 3$, we also fix a vector bundle $E$ of rank 2 and look at the variety $V_\delta(E)$ parameterizing sections of $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::97224f7b700f56ae2084d292634c9e0d
http://hdl.handle.net/11365/37832
http://hdl.handle.net/11365/37832
Autor:
Ballico, E. (Edoardo)
Publikováno v:
Collectanea Mathematica; 1998: Vol.: 49 Núm.: 2-3; p. 185-189
Let $C$ be an elliptic curve and $E, F$ polystable vector bundles on $C$ such that no two among the indecomposable factors of $E\oplus F$ are isomorphic. Here we give a complete classification of such pairs $(E,F)$ such that $E$ is a subbundle of $F$
Autor:
Ballico, E. (Edoardo)
Publikováno v:
Collectanea Mathematica; 1998: Vol.: 49 Núm.: 1; p. 33-41
Fix positive integers $s, n_i, 1\leq i\leq s$, a finite number of lines, $D_1,\cdots,D_s$ of $\textbf{CP}^2$, points $P1,\cdots,Ps$ with $P_i\in D_i$ for all $i$ and let $Z(i)$ be the length $n_i$ subscheme of $D_i$ with support $P_i$. Set $Z:= \cup_
Publikováno v:
Collectanea Mathematica; 1997: Vol.: 48 Núm.: 3; p. 281-287
Some inequalities between the class and the degree of a smooth complex projective manifold are given. Application to the case of low sectional genus are supplied.