Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Ball, Simeon Michael"'
Autor:
Ball, Simeon Michael, Adriaensen, Sam
We prove that an additive code over a finite field which has a few projections which are equivalent to a linear code is itself equivalent to a linear code, providing the code is not too short.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3484::48cc5a4bc4e7e77482ca92d9fccd61b6
https://hdl.handle.net/2117/387261
https://hdl.handle.net/2117/387261
Autor:
Ball, Simeon Michael, Dixon, James
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Universitat Politècnica de Catalunya (UPC)
We present a polynomial-time reduction from the multi-graph isomorphism problem to the problem of code equivalence of additive codes over finite extensions of the field with two elements.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::03598c7d5f8cedf4c359151a1b9ad6d2
http://hdl.handle.net/2117/364757
http://hdl.handle.net/2117/364757
Autor:
Ball, Simeon Michael
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
The polynomial method refers to the application of polynomials to combinatorial problems. The method is particularly effective for Galois geometries and a number of problems and conjectures have been solved using the polynomial method. In many cases
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::dfa3fc72f9160fab977ba090fb016d6a
https://hdl.handle.net/2117/18846
https://hdl.handle.net/2117/18846
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Let $f$ be a function from a finite field ${\mathbb F}_p$ with a prime number $p$ of elements, to ${\mathbb F}_p$. In this article we consider those functions $f(X)$ for which there is a positive integer $n > 2\sqrt{p-1}-\frac{11}{4}$ with the proper
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::3bc8a60db7e2cc25570a099ddab33c75
https://hdl.handle.net/2117/1403
https://hdl.handle.net/2117/1403
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
In this article we present a punctured version of Alon's Nullstellensatz which states that if $f$ vanishes at nearly all, but not all, of the common zeros of some polynomials $g_1(X_1),\ldots,g_n(X_n)$ then every $I$-residue of $f$, where the ideal $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::45d9fc21f97f469bab4852ba602f00bb
https://hdl.handle.net/2117/1404
https://hdl.handle.net/2117/1404
Autor:
Ball, Simeon Michael, Zieve, Michael
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Every symplectic spread of PG(3, q), or equivalently every ovoid of Q(4, q), is shown to give a certain family of permutation polynomials of GF(q) and vice-versa. This leads to an algebraic proof of the existence of the Tits-L¨uneburg spread of W(22
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::4c923dacce6d5f64c0112515386457d2
http://hdl.handle.net/2117/18893
http://hdl.handle.net/2117/18893
Autor:
Popatia, Tabriz
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Universitat Politècnica de Catalunya (UPC)
Low density Parity Check (LDPC) Codes are asymptotically good codes with a fast decoding algorithm, and hence have extensive applications. A lot of work has been done on constructing a quantum code with LDPC properties. Recent breakthroughs show that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8b1a21f10f0ca77f2689e04fb7292a97
http://hdl.handle.net/2117/372044
http://hdl.handle.net/2117/372044
Autor:
Puig Pericas, Pablo
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Universitat Politècnica de Catalunya (UPC)
Quantum particles are continuously interacting with the environment hence quantum information is always susceptible to errors. Consequently when encoding information into quantum bits a special treatment is required such that there is a recovery map
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::d10a379152e5bf2a85f5e6d5ecd72af9
https://hdl.handle.net/2117/349594
https://hdl.handle.net/2117/349594
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Universitat Politècnica de Catalunya (UPC)
Low Density Parity Check codes, LDPCs for short, are a family of codes which have shown near optimal error-correcting capabilites. They were proposed in 1963 by Robert Gallager in his PhD thesis. While he proved that probabilistic constructions of ra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::95403a879afc39f74792e7c9c16adee7
http://hdl.handle.net/2117/349213
http://hdl.handle.net/2117/349213