Zobrazeno 1 - 10
of 184
pro vyhledávání: '"Baldi, Pietro"'
We consider the free boundary problem for a 3-dimensional, incompressible, irrotational liquid drop of nearly spherical shape with capillarity. We study the problem from scratch, extending some classical results from the flat case (capillary water wa
Externí odkaz:
http://arxiv.org/abs/2408.02333
We consider the Kirchhoff equation on tori of any dimension and we construct solutions whose Sobolev norms oscillates in a chaotic way on certain long time scales. The chaoticity is encoded in the time between oscillations of the norm, which can be c
Externí odkaz:
http://arxiv.org/abs/2303.00688
Autor:
Baldi, Pietro
We consider the smooth, compactly supported solutions of the steady 3D Euler equations of incompressible fluids constructed by Gavrilov in 2019, and we study the corresponding fluid particle dynamics. This is an ode analysis, which contributes to the
Externí odkaz:
http://arxiv.org/abs/2302.02982
Autor:
Bonifacas Stundžia
Publikováno v:
Baltistica, Vol 42, Iss 1, Pp 135-139 (2011)
Externí odkaz:
https://doaj.org/article/1a4cc26c09dd41cc81b50ba761abc7e6
Autor:
Toops, Gary H.
Publikováno v:
Language, 2007 Jun 01. 83(2), 452-453.
Externí odkaz:
https://www.jstor.org/stable/40070858
Autor:
Baldi, Pietro
We introduce a modified version of the Whitney extension operators for collections of functions from a closed subset of $\mathbb{R}^n$ into scales of Banach spaces with smoothing operators. We prove an extension theorem for collections whose elements
Externí odkaz:
http://arxiv.org/abs/2010.07236
Autor:
Baldi, Pietro, Haus, Emanuele
We consider the Kirchhoff equation $$ \partial_{tt} u - \Delta u \Big( 1 + \int_{\mathbb T^d} |\nabla u|^2 \Big) = 0 $$ on the $d$-dimensional torus $\mathbb T^d$, and its Cauchy problem with initial data $u(0,x)$, $\partial_t u(0,x)$ of size $\varep
Externí odkaz:
http://arxiv.org/abs/2007.03543
Autor:
Baldi, Pietro, Haus, Emanuele
Consider the Kirchhoff equation $$ \partial_{tt} u - \Delta u \Big( 1 + \int_{\mathbb{T}^d} |\nabla u|^2 \Big) = 0 $$ on the $d$-dimensional torus $\mathbb{T}^d$. In a previous paper we proved that, after a first step of quasilinear normal form, the
Externí odkaz:
http://arxiv.org/abs/2006.01136
Autor:
Baldi, Pietro, Montalto, Riccardo
We prove the existence of time-quasi-periodic solutions of the incompressible Euler equation on the three-dimensional torus $\T^3$, with a small time-quasi-periodic external force. The solutions are perturbations of constant (Diophantine) vector fiel
Externí odkaz:
http://arxiv.org/abs/2003.14313
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.