Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Bairstow's method"'
Autor:
Brodlie, Kenneth W.
Publikováno v:
Mathematics of Computation, 1975 Jul 01. 29(131), 816-826.
Externí odkaz:
https://www.jstor.org/stable/2005292
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wai-Shing Luk
Publikováno v:
BIT Numerical Mathematics. 36:302-308
Aberth's method for finding the roots of a polynomial was shown to be robust. However, complex arithmetic is needed in this method even if the polynomial is real, because it starts with complex initial approximations. A novel method is proposed for r
Autor:
H. Van de Vel, M. Vander Straeten
Publikováno v:
Journal of Computational and Applied Mathematics. 40(1):105-114
For many high-order one-point iteration processes, convergence slows down to order one in case of multiple real zeros. A method is proposed that accelerates this convergence and simultaneously computes the multiplicity of the zero. This method is als
Publikováno v:
Chaos (Woodbury, N.Y.). 9(2)
This paper is devoted to the study of the global dynamical properties of a two-dimensional noninvertible map, with a denominator which can vanish, obtained by applying Bairstow's method to a cubic polynomial. It is shown that the complicated structur
Publikováno v:
Numerische Mathematik. 50:477-482
Necessary and sufficient condition of algebraic character is given for the invertibility of the Jacobian matrix in Bairstow's method. This leads to a sufficient condition for local quadratic convergence. Results also yield the rank of the Jacobian, w
Autor:
David W. Boyd
Publikováno v:
SIAM Journal on Numerical Analysis. 14:571-574
It is shown that if Bairstow’s method is applied to a polynomial with exactly one real root r and the initial trial factor vanishes at r, then all succeeding iterates will vanish at r and hence the method cannot converge. The cubic case is investig
Autor:
Shinobu Sasaki
Publikováno v:
Transactions of the Society of Instrument and Control Engineers. 23:485-490
Autor:
Kenneth W. Brodlie
Publikováno v:
Mathematics of Computation. 29:816-826
We show that Bairstow’s method is just one member of a family of similar algorithms for determining a quadratic factor of a polynomial. We suggest a way of choosing an appropriate member of this family for a particular problem. Numerical results in
Autor:
Herbert E. Salzer
Publikováno v:
Numerische Mathematik. 3:120-124
u xx +u yy =u t Bairstow's method for improving an approximate real quadratic factor (x 2?px?q) of a polynomial with real coefficients which leaves a remainderr(x), is to determine ?p and ?q to satisfy $$0 = r\left( x \right) + \frac{{\partial r\left