Zobrazeno 1 - 10
of 126
pro vyhledávání: '"Baillie, C. P."'
Publikováno v:
Nucl.Phys.Proc.Suppl. 53 (1997) 732-734
We perform extensive Monte Carlo simulations of the 10-state Potts model on quenched two-dimensional $\Phi^3$ gravity graphs to study the effect of quenched connectivity disorder on the phase transition, which is strongly first order on regular latti
Externí odkaz:
http://arxiv.org/abs/hep-lat/9609044
Publikováno v:
Phys.Lett. B388 (1996) 14-20
We perform extensive Monte Carlo simulations of the 10-state Potts model on quenched two-dimensional $\Phi^3$ gravity graphs to study the effect of quenched coordination number randomness on the nature of the phase transition, which is strongly first
Externí odkaz:
http://arxiv.org/abs/hep-lat/9607033
Publikováno v:
J. Phys. A29, 6683-6691 (1996)
We study the dynamical out-of-equilibrium behavior of a $J = \pm 1$ Ising spin glass on quenched $\phi^{3}$ graphs. We show that magnetization and energy decay with a power law behavior, with exponents that are linear in $\frac{T}{T_{c}}$. Quenched $
Externí odkaz:
http://arxiv.org/abs/cond-mat/9606194
Publikováno v:
Phys.Lett. B369 (1996) 123-129
We perform simulations of an absolute value version of the Villain model on phi3 and phi4 Feynman diagrams, ``thin'' 3-regular and 4-regular random graphs. The phi4 results are in excellent quantitative agreement with the exact calculations by Dorey
Externí odkaz:
http://arxiv.org/abs/hep-lat/9510030
Autor:
Baillie, C. F., Johnston, D. A.
Publikováno v:
Nucl.Phys.Proc.Suppl. 47 (1996) 649-652
We discuss the utility of analytical and numerical investigation of spin models, in particular spin glasses, on ordinary ``thin'' random graphs (in effect Feynman diagrams) using methods borrowed from the ``fat'' graphs of two dimensional gravity. We
Externí odkaz:
http://arxiv.org/abs/hep-lat/9508003
Autor:
Baillie, C. F., Johnston, D. A.
Publikováno v:
Phys.Lett. B357 (1995) 287-294
We simulate the Ising model on dynamical quadrangulations using a generalization of the flip move for triangulations with two aims: firstly, as a confirmation of the universality of the KPZ/DDK exponents of the Ising phase transition, worthwhile in v
Externí odkaz:
http://arxiv.org/abs/hep-lat/9506022
Publikováno v:
Nucl.Phys. B450 (1995) 730-752
In a recent paper we found strong evidence from simulations that the Isingantiferromagnet on ``thin'' random graphs - Feynman diagrams - displayed amean-field spin glass transition. The intrinsic interest of considering such random graphs is that the
Externí odkaz:
http://arxiv.org/abs/hep-lat/9505003
Publikováno v:
Nucl.Phys. B432 (1994) 551-570
The Ising model on ``thin'' graphs (standard Feynman diagrams) displays several interesting properties. For ferromagnetic couplings there is a mean field phase transition at the corresponding Bethe lattice transition point. For antiferromagnetic coup
Externí odkaz:
http://arxiv.org/abs/hep-lat/9407024
Publikováno v:
Phys.Lett. B328 (1994) 284-290
We simulate the Ising model on a set of fixed random $\phi^3$ graphs, which corresponds to a {\it quenched} coupling to 2D gravity rather than the annealed coupling that is usually considered. We investigate the critical exponents in such a quenched
Externí odkaz:
http://arxiv.org/abs/hep-lat/9401023
Autor:
Baillie, C. F., Johnston, D. A.
Publikováno v:
Phys.Lett. B326 (1994) 51-56
We investigate numerically the behaviour of damage spreading in a Kauffman cellular automaton with quenched rules on a dynamical $\phi^3$ graph, which is equivalent to coupling the model to discretized 2D gravity. The model is interesting from the ce
Externí odkaz:
http://arxiv.org/abs/hep-lat/9312061