Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Baidoo, EEK"'
Autor:
Bouchez, P, Teixeira Benites, V, Baidoo, EEK, Mortimer, JC, Sullivan, ML, Scheller, HV, Eudes, A
Publikováno v:
Letters in applied microbiology, vol 69, iss 3
Clovamide and its analogues are N-hydroxycinnamoyl-L-amino acids (HAA) that exhibit antioxidant activities. For environmental and economic reasons, biological synthesis of these plant-derived metabolites has garnered interest. In this study, we explo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::a8a18b3ffc2d707fe35741ec375723f2
https://escholarship.org/uc/item/8695g03v
https://escholarship.org/uc/item/8695g03v
Autor:
Jay D. Keasling, Yan Chen, Baidoo Eek, Jacquelyn M. Blake-Hedges, Christopher J. Petzold, Mitchell G. Thompson, Adam M. Deutschbauer, Sermeno Ln, Allison N. Pearson, Pablo Cruz-Morales, Velasquez Ae, William A. Sharpless, Veronica T. Benites, Luis E. Valencia
Pseudomonas putidais a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindranc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::643abb8075bf141eaac7bddb36fb5452
https://doi.org/10.1101/660795
https://doi.org/10.1101/660795
Autor:
Eng, T, Demling, P, Herbert, RA, Chen, Y, Benites, V, Martin, J, Lipzen, A, Baidoo, EEK, Blank, LM, Petzold, CJ, Mukhopadhyay, A
Publikováno v:
Eng, T; Demling, P; Herbert, RA; Chen, Y; Benites, V; Martin, J; et al.(2018). Restoration of biofuel production levels and increased tolerance under ionic liquid stress is enabled by a mutation in the essential Escherichia coli gene cydC 06 Biological Sciences 0605 Microbiology 06 Biological Sciences 0604 Genetics. Microbial Cell Factories, 17(1). doi: 10.1186/s12934-018-1006-8. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/8jc2s1g5
© 2018 The Author(s). Background: Microbial production of chemicals from renewable carbon sources enables a sustainable route to many bioproducts. Sugar streams, such as those derived from biomass pretreated with ionic liquids (IL), provide efficien
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______325::aca782bea433c939ac04c0d179195986
http://www.escholarship.org/uc/item/8jc2s1g5
http://www.escholarship.org/uc/item/8jc2s1g5
Autor:
Barajas, JF, Zargar, A, Pang, B, Benites, VT, Gin, J, Baidoo, EEK, Petzold, CJ, Hillson, NJ, Keasling, JD
Publikováno v:
Barajas, JF; Zargar, A; Pang, B; Benites, VT; Gin, J; Baidoo, EEK; et al.(2018). Biochemical Characterization of β-Amino Acid Incorporation in FluvirucinB2Biosynthesis. ChemBioChem. doi: 10.1002/cbic.201800169. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/71d5d5kn
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Naturally occurring lactams, such as the polyketide-derived macrolactams, provide a diverse class of natural products that could enhance existing chemically produced lactams. Although β-amino acid
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______325::e616230f97f56f8670152fdc86348ee7
http://www.escholarship.org/uc/item/71d5d5kn
http://www.escholarship.org/uc/item/71d5d5kn
Publikováno v:
Haushalter, RW; Phelan, RM; Hoh, KM; Su, C; Wang, G; Baidoo, EEK; et al.(2017). Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin-Fatty Acid Biosynthetic Pathway. Journal of the American Chemical Society, 139(13), 4615-4618. doi: 10.1021/jacs.6b11895. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/92n963qq
© 2017 American Chemical Society. Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental conce
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______325::41d3eb1d4cb6e52edc8eb77a8a47673f
http://www.escholarship.org/uc/item/92n963qq
http://www.escholarship.org/uc/item/92n963qq
Publikováno v:
Eng, CH; Yuzawa, S; Wang, G; Baidoo, EEK; Katz, L; & Keasling, JD. (2016). Alteration of Polyketide Stereochemistry from anti to syn by a Ketoreductase Domain Exchange in a Type i Modular Polyketide Synthase Subunit. Biochemistry, 55(12), 1677-1680. doi: 10.1021/acs.biochem.6b00129. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/5zw6k4dm
© 2016 American Chemical Society. Polyketide natural products have broad applications in medicine. Exploiting the modular nature of polyketide synthases to alter stereospecificity is an attractive strategy for obtaining natural product analogues wit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______325::4bb993fa188e1cc2211acc487ec9eeff
http://www.escholarship.org/uc/item/5zw6k4dm
http://www.escholarship.org/uc/item/5zw6k4dm
Autor:
Vega-Sánchez, ME, Loqué, D, Lao, J, Catena, M, Verhertbruggen, Y, Herter, T, Yang, F, Harholt, J, Ebert, B, Baidoo, EEK, Keasling, JD, Scheller, HV, Heazlewood, JL, Ronald, PC
Publikováno v:
Plant biotechnology journal, vol 13, iss 7
Vega-Sánchez, ME; Loqué, D; Lao, J; Catena, M; Verhertbruggen, Y; Herter, T; et al.(2015). Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls. Plant Biotechnology Journal, 13(7), 903-914. doi: 10.1111/pbi.12326. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/0rx2p182
Vega-Sánchez, ME; Loqué, D; Lao, J; Catena, M; Verhertbruggen, Y; Herter, T; et al.(2015). Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls. Plant Biotechnology Journal, 13(7), 903-914. doi: 10.1111/pbi.12326. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/0rx2p182
© 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd. Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass mod
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::1a79a76ff886593ab9337e64af5648fa
https://escholarship.org/uc/item/0rx2p182
https://escholarship.org/uc/item/0rx2p182
Autor:
Chubukov, V, Mingardon, F, Schackwitz, W, Baidoo, EEK, Alonso-Gutierrez, J, Hu, Q, Lee, TS, Keasling, JD, Mukhopadhyay, A
Publikováno v:
Applied and environmental microbiology, vol 81, iss 14
Chubukov, V; Mingardon, F; Schackwitz, W; Baidoo, EEK; Alonso-Gutierrez, J; Hu, Q; et al.(2015). Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase AhpC. Applied and Environmental Microbiology, 81(14), 4690-4696. doi: 10.1128/AEM.01102-15. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/37b8d8s5
Chubukov, V; Mingardon, F; Schackwitz, W; Baidoo, EEK; Alonso-Gutierrez, J; Hu, Q; et al.(2015). Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase AhpC. Applied and Environmental Microbiology, 81(14), 4690-4696. doi: 10.1128/AEM.01102-15. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/37b8d8s5
© 2015, American Society for Microbiology. Limonene, a major component of citrus peel oil, has a number of applications related to microbiology. The antimicrobial properties of limonene make it a popular disinfectant and food preservative, while its
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::f7cd4f3bfb40f81dcc9865d4782d0807
https://escholarship.org/uc/item/37b8d8s5
https://escholarship.org/uc/item/37b8d8s5
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tian Y; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA., Gao Y; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA., Turumtay H; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA.; Department of Energy System Engineering, Karadeniz Technical University, 61830, Trabzon, Turkey., Turumtay EA; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA.; Department of Chemistry, Recep Tayyip Erdogan University, 53100, Rize, Turkey., Chai YN; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA., Choudhary H; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, 94550, USA., Park JH; Forage Genetics International, West Salem, WI, 54669, USA., Wu CY; Forage Genetics International, West Salem, WI, 54669, USA., De Ben CM; Department of Plant Sciences, University of California-Davis, Davis, CA, 95616, USA., Dalton J; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA., Louie KB; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA.; Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA., Harwood T; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA.; Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA., Chin D; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Rausser College of Natural Resources, University of California-Berkeley, Berkeley, CA, 94720, USA., Vuu KM; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA., Bowen BP; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA.; Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA., Shih PM; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA.; Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, 94720, USA., Baidoo EEK; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA., Northen TR; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA.; Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA., Simmons BA; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA., Hutmacher R; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; University of California, Agriculture and Natural Resources, Kearney Agricultural Research and Extension Center, Parlier, CA, 93648, USA., Atim J; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; University of California, Agriculture and Natural Resources, Kearney Agricultural Research and Extension Center, Parlier, CA, 93648, USA., Putnam DH; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Department of Plant Sciences, University of California-Davis, Davis, CA, 95616, USA., Scown CD; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.; Energy & Biosciences Institute, University of California-Berkeley, Berkeley, CA, 94720, USA.; Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA., Mortimer JC; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA.; School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia, Australia., Scheller HV; Joint BioEnergy Institute, Emeryville, CA, 94608, USA.; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA.; Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, 94720, USA., Eudes A; Joint BioEnergy Institute, Emeryville, CA, 94608, USA. ageudes@lbl.gov.; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA. ageudes@lbl.gov.
Publikováno v:
Biotechnology for biofuels and bioproducts [Biotechnol Biofuels Bioprod] 2024 Oct 15; Vol. 17 (1), pp. 128. Date of Electronic Publication: 2024 Oct 15.