Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Bahri, Yakine"'
Autor:
Bahri, Yakine, Hajaiej, Hichem
In this paper, we study the transverse instability of generalized Zakharov-Kuznetsov equation for the line soliton with critical speed. We derive and justify a normal form reduction for a bifurcation problem of the stationary nonlinear KdV equation o
Externí odkaz:
http://arxiv.org/abs/2208.07896
Autor:
Bahri, Yakine, Hajaiej, Hichem
The main goal of this paper is to address an important conjecture in the field of differential equations in the presence of a harmonic potential. While in the subcritical case, the uniqueness of positive solution has been addressed by Hirose and Ohta
Externí odkaz:
http://arxiv.org/abs/2201.06764
In this paper, we study the bifurcation problem from a line soliton for a stationary nonlinear Schr\"{o}dinger equation on the product space $\mathbb{R} \times \mathbb{T}$. We extend earlier results to a larger class of the nonlinearity in the equati
Externí odkaz:
http://arxiv.org/abs/2103.05887
In this paper, we study the transverse stability of the line Schr\"{o}dinger soliton under a full wave guide Schr\"{o}dinger flow on a cylindrical domain $\mathbb R\times\mathbb T$. When the nonlinearity is of power type $|\psi|^{p-1}\psi$ with $p>1$
Externí odkaz:
http://arxiv.org/abs/2101.01314
We construct radially symmetric self-similar blow-up profiles for the mass supercritical nonlinear Schr\"odinger equation $i\partial_t u + \Delta u + |u|^{p-1}u=0$ on $\mathbf{R}^d$, close to the mass critical case and for any space dimension $d\ge 1
Externí odkaz:
http://arxiv.org/abs/1911.11457
Autor:
Bahri, Yakine
Dans cette thèse, nous étudions l'équation de Landau-Lifshitz avec une anisotropie planaire en dimension un. Cette équation décrit la dynamique de l'aimantation dans des matériaux ferromagnétiques. Elle admet des solutions particulières de ty
Externí odkaz:
http://www.theses.fr/2016SACLX028/document
In this paper, we study the solitary wave and the Cauchy problem for Half-wave-Schr\"{o}dinger equations in the plane. First, we show the existence and orbital stability of the ground states. Secondly, we prove that traveling waves exist and converge
Externí odkaz:
http://arxiv.org/abs/1810.01385
Autor:
Bahri, Yakine
We establish the asymptotic stability of multi-solitons for the one-dimensional Landau-Lifshitz equation with an easy-plane anisotropy. The solitons have non-zero speed, are ordered according to their speeds and have sufficiently separated initial po
Externí odkaz:
http://arxiv.org/abs/1604.03715
Autor:
Bahri, Yakine
Publikováno v:
Anal. PDE 9 (2016) 645-697
We prove the asymptotic stability in the energy space of non-zero speed solitons for the one-dimensional Landau-Lifshitz equation with an easy-plane anisotropy. More precisely, we show that any solution corresponding to an initial datum close to a so
Externí odkaz:
http://arxiv.org/abs/1512.00441
Pitchfork Bifurcation at Line Solitons for Nonlinear Schrödinger Equations on the Product Space R×T.
Publikováno v:
Annales Henri Poincaré; Jul2024, Vol. 25 Issue 7, p3467-3497, 31p