Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Bahlekeh, Abdolnaser"'
Autor:
Bahlekeh, Abdolnaser, Fotouhi, Fahimeh Sadat, Hamlehdari, Mohammad Amin, Salarian, Shokrollah
Let (S; n) be a commutative noetherian local ring and let w in n be non-zero divisor. This paper is concerned with the two categories of monomorphisms between finitely generated (Gorenstein) projective S-modules, such that their cokernels are annihil
Externí odkaz:
http://arxiv.org/abs/2405.16514
Let ($S, \mathfrak{n})$ be a commutative noetherian local ring and let $\omega\in\mathfrak{n}$ be non-zero divisor. This paper is concerned with the category of monomorphisms between finitely generated Gorenstein projective S-modules, such that their
Externí odkaz:
http://arxiv.org/abs/2402.13833
Autor:
Hafezi, Rasool, Bahlekeh, Abdolnaser
Let $\Lambda$ be an Artin algebra and ${\mathsf{mod}}\mbox{-} ({\underline{\mathsf{Gprj}}}\mbox{-}\Lambda)$ the category of finitely presented functors over the stable category ${\underline{\mathsf{Gprj}}}\mbox{-}\Lambda$ of finitely generated Gorens
Externí odkaz:
http://arxiv.org/abs/2402.14126
Publikováno v:
Bull. Malays. Math. Sci. Soc. 2023
Let $(S, \n)$ be a commutative noetherian local ring and $\omega\in\n$ be non-zerodivisor. This paper deals with the behavior of the category $\mon(\omega, \cp)$ consisting of all monomorphisms between finitely generated projective $S$-modules with c
Externí odkaz:
http://arxiv.org/abs/2307.13559
Let $n$ be a non-negative integer. An exact category $\C$ is said to be an $n$-Frobenius category, provided that it has enough $n$-projectives and $n$-injectives and the $n$-projectives coincide with the $n$-injectives. It is proved that any abelian
Externí odkaz:
http://arxiv.org/abs/2306.08267
Publikováno v:
Kyoto J. Math. 59, no. 1 (2019), 237-266
Let $(R, \m)$ be a $d$-dimensional commutative noetherian local ring. Let $\M$ denote the morphism category of finitely generated $R$-modules and let $\Sc$ be the submodule category of $\M$. In this paper, we specify the Auslander transpose in submod
Externí odkaz:
http://arxiv.org/abs/1808.07508
Let $(R, \m, k)$ be a complete Cohen-Macaulay local ring. In this paper, we assign a numerical invariant, for any balanced big Cohen-Macaulay module, called $\uh$-length. Among other results, it is proved that, for a given balanced big Cohen-Macaulay
Externí odkaz:
http://arxiv.org/abs/1807.04508
Let $(R,\m,k)$ be a commutative noetherian local ring of Krull dimension $d$. We prove that the cohomology annihilator $\ca(R)$ of $R$ is $\m$-primary if and only if for some $n\ge0$ the $n$-th syzygies in $\mod R$ are constructed from syzygies of $k
Externí odkaz:
http://arxiv.org/abs/1504.06163
Publikováno v:
In Journal of Algebra 1 April 2019 523:15-33
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.