Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Bahl, Gaétan"'
While object detection methods traditionally make use of pixel-level masks or bounding boxes, alternative representations such as polygons or active contours have recently emerged. Among them, methods based on the regression of Fourier or Chebyshev c
Externí odkaz:
http://arxiv.org/abs/2202.03784
Automatic road graph extraction from aerial and satellite images is a long-standing challenge. Existing algorithms are either based on pixel-level segmentation followed by vectorization, or on iterative graph construction using next move prediction.
Externí odkaz:
http://arxiv.org/abs/2112.05215
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data. As they generalize the operations of classical CNNs on grids to arbitrary topologies, GNNs also bring much of the implementa
Externí odkaz:
http://arxiv.org/abs/2012.15823
Publikováno v:
In Orthopaedics & Traumatology: Surgery & Research October 2021 107(6)
Autor:
Lafarge, Florent, Bahl, Gaétan
Publikováno v:
IGARSS 2022 – IEEE International Geoscience and Remote Sensing Symposium
IGARSS 2022 – IEEE International Geoscience and Remote Sensing Symposium, Jul 2022, Kuala Lumpur, Malaysia
IGARSS 2022 – IEEE International Geoscience and Remote Sensing Symposium, Jul 2022, Kuala Lumpur, Malaysia
International audience; Traditional Convolutional Neural Networks (CNN) for semantic segmentation of images use 2D convolution operations. While the spatial inductive bias of 2D convolutions allow CNNs to build hierarchical feature representations, t
Autor:
Bahl, Gaétan
Publikováno v:
Artificial Intelligence [cs.AI]. Université Côte d'Azur, 2022. English. ⟨NNT : 2022COAZ4021⟩
The recent advances in high-resolution Earth observation satellites and the reduction in revisit times introduced by the creation of constellations of satellites has led to the daily creation of large amounts of image data hundreds of TeraBytes per d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______165::0c38e6ade50013260b86eaeb28733101
https://theses.hal.science/tel-03789667v2/file/2022COAZ4021.pdf
https://theses.hal.science/tel-03789667v2/file/2022COAZ4021.pdf
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.