Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Bahar Kırık"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ráczi, Bahar Kırık1 bahar.kirik@marmara.edu.tr, Kılınç, Cihat1 cihatkilinc@marun.edu.tr, Toplu, Ramazan1 ramazantoplu@marun.edu.tr
Publikováno v:
Note di Matematica. 2023, Vol. 43 Issue 2, p83-98. 16p.
Autor:
Bahar Kırık
Publikováno v:
Filomat. 33:1249-1257
In the present study, some properties of Killing vector fields are investigated on 4-dimensional manifolds in case of the signature of the metric tensor 1 is either Lorentz or positive definite or neutral. First of all, the notation and the main obje
Autor:
Bahar Kırık, Graham Hall
Publikováno v:
Journal of Geometry and Physics. 133:168-180
This paper studies some general principles of metric (Killing) symmetry on a 4-dimensional, connected manifold M admitting a metric of neutral signature. First a general survey of neutral geometry is presented and this is followed by a discussion of
Autor:
Bahar Kırık
Publikováno v:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences. 89:711-719
Generalized quasi-Einstein manifolds on 4-dimensional manifolds admitting a metric whose signature is one of the only possibilities $$(+, +, - , -)$$, $$(+, +, + , -)$$ and $$(+, +, +, +)$$ are based on the holonomy group of the Levi-Civita connectio
Autor:
Bahar Kırık, Füsun Özen Zengin
Publikováno v:
Bulletin of the Iranian Mathematical Society. 45:89-102
In this paper, we work on some properties of generalized quasi-Einstein and pseudo Ricci symmetric generalized quasi-Einstein manifolds. Firstly, some basic concepts about generalized quasi-Einstein manifolds are given. In the second section, the hol
Autor:
Bahar Kırık
Publikováno v:
Publications de l'Institut Math?matique (Belgrade). 103:103-112
We study recurrence properties of the second order skew-sym- metric tensor fields, which are referred to as bivectors, on a 4-dimensional manifold admitting a Lorentz metric. Considering the known classification scheme for these tensor fields, recurr
Autor:
Bahar Kırık, Graham Hall
Publikováno v:
Journal of Geometry and Physics. 98:262-274
This paper studies the recurrence structure of second order symmetric tensors on a 4 -dimensional manifold M admitting a metric g of neutral signature ( + , + , − , − ) . The technique used is to first solve the problem when the tensor in questio
Autor:
Füsun Özen Zengin, Bahar Kırık
Publikováno v:
Filomat. 29:525-534
As it is known, Einstein manifolds play an important role in geometry as well as in general relativity. Einstein manifolds form a natural subclass of the class of quasi-Einstein manifolds. In this work, we investigate conformal mappings of quasi-Eins
Autor:
Füsun Özen Zengin, Bahar Kırık
Publikováno v:
Miskolc Mathematical Notes. 14:629