Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Bahadir, Oǧuzhan"'
Autor:
Bahadır, Oğuzhan
In this study, we introduce indefinite sasakian statistical manifolds and lightlike hypersurfaces of an indefinite sasakian statistical manifold. Some relations among induced geometrical objects with respect to dual connections in a lightlike hypersu
Externí odkaz:
http://arxiv.org/abs/2004.01512
Kenmotsu geometry is a valuable part of contact geometry with nice applications in other fields such as theoretical physics. In this article, we study the statistical counterpart of a Kenmotsu manifold, that is, Kenmotsu statistical manifold with som
Externí odkaz:
http://arxiv.org/abs/1902.09298
Autor:
Bahadir, Oguzhan, Tripathi, Mukut Mani
Lightlike hypersurfaces of a statistical manifold are studied. It is shown that a lightlike hypersurface of a statistical manifold is not a statistical manifold with respect to the induced connections, but the screen distribution has a canonical stat
Externí odkaz:
http://arxiv.org/abs/1901.09251
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The objective of the present paper is to study the $\eta$-Ricci solitons on Kenmotsu manifold with generalized symmetric metric connection of type $(\alpha,\beta)$. There are discussed Ricci and $\eta$-Ricci solitons with generalized symmetric metric
Externí odkaz:
http://arxiv.org/abs/1809.00485
Autor:
Bahadır, Oğuzhan, Chaubey, Sudhakar K
The present study initially identify the generalized symmetric connections of type $(\alpha,\beta)$, which can be regarded as more generalized forms of quarter and semi-symmetric connections. The quarter and semi-symmetric connections are obtained re
Externí odkaz:
http://arxiv.org/abs/1805.00810
Autor:
Bahadır, Oguzhan, Uddin, Siraj
Publikováno v:
Journal of Mathematical Extension Vol. 13, No. 4, (2019), 23-39
In this paper, we study slant submanifolds of Riemannian manifolds with Golden structure. A Riemannian manifold $(\tilde{M},\tilde{g},{\varphi})$ is called a Golden Riemannian manifold if the $(1,1)$ tensor field ${\varphi}$ on $\tilde{M}$ is a golde
Externí odkaz:
http://arxiv.org/abs/1804.11126
The present study initially identified the generalized symmetric connections $(\alpha,\beta)$ typed, which can be regarded as more generalised forms of quarter and semi-symmetric connections. The quarter and semi-symmetric connections are obtained re
Externí odkaz:
http://arxiv.org/abs/1804.10020
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.