Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Bahadır, Selim"'
A sequence of vertices in a graph $G$ without isolated vertices is called a total dominating sequence if every vertex $v$ in the sequence has a neighbor which is adjacent to no vertex preceding $v$ in the sequence, and at the end every vertex of $G$
Externí odkaz:
http://arxiv.org/abs/2010.08368
A subset of vertices in a graph is called a total dominating set if every vertex of the graph is adjacent to at least one vertex of this set. A total dominating set is called minimal if it does not properly contain another total dominating set. In th
Externí odkaz:
http://arxiv.org/abs/2010.02341
Autor:
Bahadır, Selim
A subset $M$ of the edges of a graph $G$ is a matching if no two edges in $M$ are incident. A maximal matching is a matching that is not contained in a larger matching. A subset $S$ of vertices of a graph $G$ with no isolated vertices is a total domi
Externí odkaz:
http://arxiv.org/abs/1907.11590
Autor:
Bahadır, Selim, Gözüpek, Didem
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol. 20 no. 1, Graph Theory (June 4, 2018) dmtcs:3304
Let $\gamma(G)$ and $\gamma_t(G)$ denote the domination number and the total domination number, respectively, of a graph $G$ with no isolated vertices. It is well-known that $\gamma_t(G) \leq 2\gamma(G)$. We provide a characterization of a large fami
Externí odkaz:
http://arxiv.org/abs/1704.04145
Publikováno v:
In Discrete Mathematics September 2021 344(9)
Autor:
Bahadır, Selim, Ceyhan, Elvan
In a digraph with $n$ vertices, a minuscule construct is a subdigraph with $m<
Externí odkaz:
http://arxiv.org/abs/1606.01944
Autor:
Bahadır, Selim, Ceyhan, Elvan
We classify isomorphism-invariant random digraphs according to where randomness resides, namely, arcs, vertices, and vertices and arcs together which in turn yield arc random digraphs (ARD), vertex random digraphs (VRD) and vertex-arc random digraphs
Externí odkaz:
http://arxiv.org/abs/1605.02087
Autor:
Bahadır, Selim, Ceyhan, Elvan
For a random sample of points in $\mathbb{R}$, we consider the number of pairs whose members are nearest neighbors (NN) to each other and the number of pairs sharing a common NN. The first type of pairs are called reflexive NNs whereas latter type of
Externí odkaz:
http://arxiv.org/abs/1605.01940
Autor:
Bahadır, Selim
Publikováno v:
QM - Quaestiones Mathematicae; Jun2023, Vol. 46 Issue 6, p1119-1129, 11p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.