Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Bagul, Yogesh J."'
Autor:
Bagul, Yogesh J., Fande, Bharti O.
In this article, we obtain exponential bounds for the generalized circular and hyperbolic functions with one parameter p. Our results are natural generalizations of some existing results for classical circular and hyperbolic functions.
Externí odkaz:
http://arxiv.org/abs/2403.09649
Autor:
Bagul, Yogesh J.
We present new several sharper and sharper lower and upper bounds for the non-zero Bernoulli numbers using Euler's formula for the Riemann zeta function. As a particular case, we determine the best possible constants $ \alpha $ and $ \beta $ such tha
Externí odkaz:
http://arxiv.org/abs/2303.14532
Publikováno v:
J. Math. Inequal., 16(3), 2022, 909-913
We point out that a concise proof of Theorem 2 in the article, 'On a quadratic estimate of Shafer' by L. Zhu contains a small mistake. Correcting this mistake and giving alternative proofs of Theorem 2 is the main aim of this note.
Externí odkaz:
http://arxiv.org/abs/2103.14037
Publikováno v:
Tbilisi Math. J., 14(2), (2021), 207-220
Motivated by the work of J. S\'andor [19], in this paper we establish a new Wilker type and Huygens type inequalities involving the trigonometric and hyperbolic functions. Moreover, in terms of hyperbolic functions, the upper and lower bounds of sin(
Externí odkaz:
http://arxiv.org/abs/2009.10527
Publikováno v:
Results Math., 76, 107(2021)
In the paper, we refine and extend Cusa-Huygens inequality by simple functions. In particular, we determine sharp bounds for $\sin(x) /x$ of the form $(2+\cos(x))/3 -(2/3-2/\pi)\Upsilon(x)$, where $\Upsilon(x) >0$ for $x\in (0, \pi/2)$, $\Upsilon(0)=
Externí odkaz:
http://arxiv.org/abs/2009.01688
Publikováno v:
Indian J. Math., 62(2), (2020), 183-190
The main aim of this note, which can be viewed as a certain addendum to the paper \cite{2019}, is to propose several generalized inequalities for the ratio functions of trigonometric and hyperbolic functions. We basically follow the approach obeyed i
Externí odkaz:
http://arxiv.org/abs/1912.04277
Publikováno v:
Annales Mathematicae Silesianae, Vol 37, Iss 1, Pp 1-15 (2023)
Several bounds of trigonometric-exponential and hyperbolic-exponential type for sinc and hyperbolic sinc functions are presented. In an attempt to generalize the results, some known inequalities are sharpened and extended. Hyperbolic versions are als
Externí odkaz:
https://doaj.org/article/10905f14b03a4649b48b0aa0edc40d51
Autor:
Bagul, Yogesh J., Chesneau, Christophe
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2020 Apr 01. 14(1), 239-254.
Externí odkaz:
https://www.jstor.org/stable/26964956
Publikováno v:
Acta Universitatis Sapientiae: Mathematica, Vol 13, Iss 1, Pp 88-104 (2021)
In this paper, we establish several generalized Becker-Stark type inequalities for the tangent function. We present unified proofs of many inequalities in the existing literature. Graphical illustrations of some obtained results are also presented.
Externí odkaz:
https://doaj.org/article/a2984de190e54323b0f6229531778a1c
Autor:
Bagul Yogesh J., Chesneau Christophe
Publikováno v:
Moroccan Journal of Pure and Applied Analysis, Vol 7, Iss 1, Pp 12-19 (2021)
We present smooth approximations to the absolute value function |x| using sigmoid functions. In particular, x erf(x/μ) is proved to be a better smooth approximation for |x| than x tanh(x/μ) and x2+μ\sqrt {{x^2} + \mu } with respect to accuracy. To
Externí odkaz:
https://doaj.org/article/64defcc04c214719bf81c33843fca84c