Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Bae Jae-Hyeong"'
Autor:
Bae Jae-Hyeong, Park Won-Gil
Publikováno v:
Demonstratio Mathematica, Vol 56, Iss 1, Pp 691-698 (2023)
In this study, we obtained the stability of the multi-variable bi-Jensen-type functional equation: n2fx1+⋯+xnn,y1+⋯+ynn=∑i=1n∑j=1nf(xi,yj).{n}^{2}f\left(\frac{{x}_{1}+\cdots +{x}_{n}}{n},\frac{{y}_{1}+\cdots +{y}_{n}}{n}\right)=\mathop{\sum }
Externí odkaz:
https://doaj.org/article/4ab9ab81aba744419f8e1b189207d29e
Autor:
Park Won-Gil, Bae Jae-Hyeong
Publikováno v:
Demonstratio Mathematica, Vol 52, Iss 1, Pp 496-502 (2019)
In this paper, we obtain Hyers-Ulam stability of the functional equations
Externí odkaz:
https://doaj.org/article/855e4ab49fee4c4893f2c1eb704177c9
Autor:
Park Won-Gil, Bae Jae-Hyeong
Publikováno v:
Demonstratio Mathematica, Vol 51, Iss 1, Pp 304-308 (2018)
In this paper, we prove the Hyers-Ulam stability of the functional equation f(x + y, z + w) + f(x + σ(y),z + τ(w)) = 2f(x, z) + 2f(y, w), where σ, τ are involutions.
Externí odkaz:
https://doaj.org/article/f7d427a8285f46d8a408aa395b466063
Autor:
Park Won-Gil, Bae Jae-Hyeong
Publikováno v:
Journal of Inequalities and Applications, Vol 2011, Iss 1, p 82 (2011)
Abstract Using the fixed-point method, we prove the generalized Hyers-Ulam stability of the functional equation f ( x + y , z + w ) + f ( x - y , z - w ) = 2 f ( x , z ) + 2 f ( y , w ) . The quadratic form f : ℝ × ℝ → ℝ given by f(x, y) = a
Externí odkaz:
https://doaj.org/article/a4956be9f78e4a2598b2082e79a04a58
Publikováno v:
Journal of Inequalities and Applications, Vol 2011, Iss 1, p 79 (2011)
Abstract The Ulam-Hyers stability problems of the following quadratic equation r 2 f x + y r + r 2 f x - y r = 2 f ( x ) + 2 f ( y ) , where r is a nonzero rational number, shall be treated. The case r = 2 was introduced by J. M. Rassias in 1999. Fur
Externí odkaz:
https://doaj.org/article/fefaed2198554d4781267c28fc7c37e8
Autor:
Bae Jae-Hyeong, Park Won-Gil
Publikováno v:
Journal of Inequalities and Applications, Vol 2010, Iss 1, p 167042 (2010)
We prove the Hyers-Ulam stability of a 2-dimensional quadratic functional equation in a class of vector variable functions in Banach modules over a unital -algebra.
Externí odkaz:
https://doaj.org/article/d4c6900b5f144d39ae7827d6a44ceafc
Autor:
Park Won-Gil, Bae Jae-Hyeong
Publikováno v:
Journal of Inequalities and Applications, Vol 2010, Iss 1, p 151547 (2010)
We obtain the generalized Hyers-Ulam stability of the Cauchy-Jensen functional equation .
Externí odkaz:
https://doaj.org/article/4f71f29dc8b644d1b20ef7ebd9559a0c
Autor:
Bae Jae-Hyeong, Park Won-Gil
Publikováno v:
Journal of Inequalities and Applications, Vol 2010, Iss 1, p 472721 (2010)
We obtain the generalized Hyers-Ulam stability of the bi-quadratic functional equation in quasinormed spaces.
Externí odkaz:
https://doaj.org/article/48ec39069ad54853b8adfff789e4b111
Autor:
Bae Jae-Hyeong, Park Won-Gil
Publikováno v:
Journal of Inequalities and Applications, Vol 2007, Iss 1, p 024716 (2007)
We obtain the general solution and the stability of the -variable quadratic functional equation The quadratic form is a solution of the given functional equation.
Externí odkaz:
https://doaj.org/article/fcf09f32bab94bd0849bb59f6db09ce3
Autor:
Bae, Jae-Hyeong1 (AUTHOR), Chang, Ick-Soon2 (AUTHOR) ischang@cnu.ac.kr, Kim, Hark-Mahn2 (AUTHOR)
Publikováno v:
Mathematics (2227-7390). Dec2022, Vol. 10 Issue 24, p4754. 8p.