Zobrazeno 1 - 10
of 98
pro vyhledávání: '"Bae, Hantaek"'
In this paper, we investigate the incompressible viscous and resistive Hall magnetohydrodynamic equations (Hall MHD in short). We first study the regularity of the magneto-vorticity field $B+\omega$. In three dimensions, we derive some bounds of $B+\
Externí odkaz:
http://arxiv.org/abs/2409.15847
In this paper, we derive decay rates of the solutions to the incompressible Navier-Stokes equations and Hall-magnetohydrodynamic equations. We first improve the decay rate of weak solutions of these equations by refining the Fourier splitting method
Externí odkaz:
http://arxiv.org/abs/2404.16290
Autor:
Bae, Hantaek, Shin, Jaeyong
In this paper, we deal with some Oldroyd type models, which describe incompressible viscoelastic fluids. There are 3 parameters in these models: the viscous coefficient of fluid $\nu_{1}$, the viscous coefficient of the elastic part of the stress ten
Externí odkaz:
http://arxiv.org/abs/2402.09175
In this paper, we investigate a Stokes-Magneto system with fractional diffusions. We first deal with the non-resistive case in $\mathbb{T}^{d}$ and establish the local and global well-posedness with initial magnetic field $\mathbf{b}_0\in H^{s}(\math
Externí odkaz:
http://arxiv.org/abs/2310.03255
Autor:
Bae, Hantaek, Kang, Kyungkeun
In this paper, we deal with the $2\frac{1}{2}$ dimensional Hall MHD by taking the velocity field $u$ and the magnetic field $B$ of the form $u(t,x,y)=\left(\nabla^{\perp}\phi(t,x,y), W(t,x,y)\right)$ and $B(t,x,y)=\left(\nabla^{\perp}\psi(t,x,y), Z(t
Externí odkaz:
http://arxiv.org/abs/2111.01344
In this work we prove that the solution of the Serre-Green-Naghdi equation cannot be globally defined when the interface reaches the impervious bottom tangentially. As a consequence, our result complements the paper \emph{Camassa, R., Falqui, G., Ort
Externí odkaz:
http://arxiv.org/abs/2001.11937
Autor:
Bae, Hantaek
Publikováno v:
In Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena October 2023 175 Part 1
In this paper, we deal with two logarithmic fourth order differential equations: the extended one-dimensional DLSS equation and its multi-dimensional analog. We show the global existence of solution in critical spaces, its convergence to equilibrium
Externí odkaz:
http://arxiv.org/abs/1909.07684
Autor:
Bae, Hantaek, Shin, Jaeyong
Publikováno v:
In Applied Mathematics Letters March 2023 137
We consider the 1D transport equation with nonlocal velocity field: \begin{equation*}\label{intro eq} \begin{split} &\theta_t+u\theta_x+\nu \Lambda^{\gamma}\theta=0, \\ & u=\mathcal{N}(\theta), \end{split} \end{equation*} where $\mathcal{N}$ is a non
Externí odkaz:
http://arxiv.org/abs/1806.01011