Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Badr El Haji"'
Publikováno v:
Rendiconti di Matematica e delle Sue Applicazioni, Vol 43, Iss 1-2, Pp 1-22 (2022)
In this work, we prove an existence theorem of entropy solutions for nonlinear elliptic problem of the type − div(a(x, u, ∇u) + Φ(x, u)) = µ in Ω, in the setting of Musielak-Orlicz spaces. The lower order term Φ verifies the natural growth
Externí odkaz:
https://doaj.org/article/285d26f8af6943b79d2b209e7efde983
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 40 (2022)
In the present paper, we study the existence and regularity of positive solutions for the following boundary value problem : $\mathrm{-div}\> \big( \lvert\nabla u\rvert^{p-2}\nabla u ) + u^{s} = \dfrac{f}{u^{\alpha}}\mbox{ in } \Omega \mbox{ and } u=
Externí odkaz:
https://doaj.org/article/4494de4c7cd2403780c4146f18e5e058
Publikováno v:
Asia Pacific Journal of Mathematics, Vol 10, p 7 (2023)
Externí odkaz:
https://doaj.org/article/059430268338447c8fe4401f54e4ea35
Autor:
Badr El Haji, Mohamed Mabdaoui
Publikováno v:
Asia Pacific Journal of Mathematics (2021)
Externí odkaz:
https://doaj.org/article/775a4fa4a627462d9b2c5284a549ffc7
Publikováno v:
Journal of Elliptic and Parabolic Equations. 9:647-672
Publikováno v:
Gulf Journal of Mathematics. 9:1-26
In this paper, we are interested in results concerning entropy solutions for nonlinear parabolic equations in Musielak Orlicz spaces without Δ2-condition.
Publikováno v:
SeMA Journal. 77:389-414
In this paper we will prove in Musielak–Orlicz spaces, the existence of renomalized solution for nonlinear elliptic equations of Leray-Lions type, in the case where the Musielak–Orlicz function $$ \varphi $$ doesn’t satisfy the $$\Delta _{2}$$
Publikováno v:
Moroccan Journal of Pure and Applied Analysis. 5:104-116
We prove in weighted Orlicz-Sobolev spaces, the existence of entropy solution for a class of nonlinear elliptic equations of Leray-Lions type, with large monotonicity condition and right hand side f ∈ L 1(Ω).
Publikováno v:
Pure and Applied Mathematics Quarterly. 14:591-606