Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Baba, Shinpei"'
Autor:
Baba, Shinpei
We consider the mapping $b_L\colon T \to \chi$ of the Fricke-Teichm\"uller space $T$ into the $PSL_2 C$-character variety $\chi$ of the surface, obtained by holonomy representations of bent hyperbolic surfaces along a fixed measured lamination $L$. W
Externí odkaz:
http://arxiv.org/abs/2203.15394
Autor:
Baba, Shinpei, Ohshika, Ken'ichi
For geometrically finite Kleinian surface groups, Bonahon and Otal proved the existence part, and partly the uniqueness part of the bending lamination conjecture. In this paper, we generalise the existence part to general Kleinian surface groups incl
Externí odkaz:
http://arxiv.org/abs/2106.11564
Autor:
Baba, Shinpei
We consider the space of ordered pairs of distinct $\mathbb{C}P^1$-structures on Riemann surfaces (of any orientations) which have identical holonomy, so that the quasi-Fuchsian space is identified with a connected component of this space. This space
Externí odkaz:
http://arxiv.org/abs/2103.04499
Autor:
Baba, Shinpei
We characterize a certain neck-pinching degeneration of (marked) $CP^1$- structures on a closed oriented surface S of genus at least two. Namely, we consider a path $C_t$ of $CP^1$-structures on S leaving every compact subset in the deformation space
Externí odkaz:
http://arxiv.org/abs/1907.00092
Autor:
Baba, Shinpei
Thurston related $\mathbb{C}{\rm P}^1$-structures (complex projective structures) and equivariant pleated surfaces in the hyperbolic-three space $\mathbb{H}^3$, in order to give a parameterization of the deformation space of $\mathbb{C}{\rm P}^1$-str
Externí odkaz:
http://arxiv.org/abs/1904.00588
Autor:
Baba, Shinpei, Gupta, Subhojoy
Let $S$ be a closed oriented surface of genus $g\geq 2$. Fix an arbitrary non-elementary representation $\rho\colon\pi_1(S)\to {\rm SL}_2(\mathbb{C})$ and consider all marked (complex) projective structures on $S$ with holonomy $\rho$. We show that t
Externí odkaz:
http://arxiv.org/abs/1402.5445
Autor:
Baba, Shinpei
Let S be an oriented closed surface of genus at least two. We show that, given a generic representation in the PSL(2,C)-character variety of S, (2\pi-)graftings produce all projective structures on S with the holonomy representation.
Comment: 58
Comment: 58
Externí odkaz:
http://arxiv.org/abs/1307.2310
Autor:
Baba, Shinpei
Publikováno v:
Geom. Topol. 19 (2015) 3233-3287
Let $S$ be a closed oriented surface of genus at least two. Gallo, Kapovich, and Marden asked if 2\pi-graftings produce all projective structures on $S$ with arbitrarily fixed holonomy (Grafting Conjecture). In this paper, we show that the conjecture
Externí odkaz:
http://arxiv.org/abs/1011.5051
Autor:
Baba, Shinpei
A Schottky group in PSL(2, C) induces an open hyperbolic handlebody and its ideal boundary is a closed orientable surface S whose genus is equal to the rank of the Schottky group. This boundary surface is equipped with a (complex) projective structur
Externí odkaz:
http://arxiv.org/abs/0906.0413
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.