Zobrazeno 1 - 10
of 104
pro vyhledávání: '"BYOTT, NIGEL P."'
Autor:
Byott, Nigel P.
Several constructions have been given for families of simple braces, but few examples are known of simple skew braces which are not braces. In this paper, we exhibit the first example of an infinite family of simple skew braces which are not braces a
Externí odkaz:
http://arxiv.org/abs/2405.16154
Autor:
Byott, Nigel P., Ferri, Fabio
We prove a conjecture of Guarnieri and Vendramin on the number of braces of a given order whose multiplicative group is a generalised quaternion group. At the same time, we give a similar result where the multiplicative group is dihedral. We also enu
Externí odkaz:
http://arxiv.org/abs/2402.12547
Autor:
Byott, Nigel P.
A question of interest both in Hopf-Galois theory and in the theory of skew braces is whether the holomorph $\mathrm{Hol(N)}$ of a finite soluble group $N$ can contain an insoluble regular subgroup. We investigate the more general problem of finding
Externí odkaz:
http://arxiv.org/abs/2205.13464
Autor:
Byott, Nigel P., Ferri, Fabio
Publikováno v:
In Journal of Algebra 1 March 2025 665:72-102
Autor:
Byott, Nigel P., Martin-Lyons, Isabel
We consider Hopf-Galois structures on separable (but not necessarily normal) field extensions $L/K$ of squarefree degree $n$. If $E/K$ is the normal closure of $L/K$ then $G=\mathrm{Gal}(E/K)$ can be viewed as a permutation group of degree $n$. We sh
Externí odkaz:
http://arxiv.org/abs/2102.05759
Autor:
Byott, Nigel P.
Publikováno v:
In Journal of Algebra 15 January 2024 638:1-31
Autor:
Alabdali, Ali A., Byott, Nigel P.
Let $n \geq 1$ be a squarefree integer, and let $M$, $A$ be two groups of order $n$. Using our previous results on the enumeration of Hopf-Galois structures on Galois extensions of fields of squarefree degree, we determine the number of skew braces (
Externí odkaz:
http://arxiv.org/abs/1910.07814
Autor:
Alabdali, Ali A., Byott, Nigel P.
Let $n$ be a squarefree natural number, and let $G$, $\Gamma$ be two groups of order $n$. We determine the number of Hopf-Galois structures of type $G$ admitted by a Galois extension of fields with Galois group isomorphic to $\Gamma$. We give some ex
Externí odkaz:
http://arxiv.org/abs/1910.07811
Autor:
Alabdali, Ali A., Byott, Nigel P.
We investigate Hopf-Galois structures on a cyclic field extension $L/K$ of squarefree degree $n$. By a result of Greither and Pareigis, each such Hopf-Galois structure corresponds to a group of order $n$, whose isomorphism class we call the type of t
Externí odkaz:
http://arxiv.org/abs/1703.09636
Autor:
Byott, Nigel P., Martin-Lyons, Isabel
Publikováno v:
In Journal of Pure and Applied Algebra March 2022 226(3)