Zobrazeno 1 - 10
of 82
pro vyhledávání: '"BULL, D. R."'
Atmospheric turbulence poses a challenge for the interpretation and visual perception of visual imagery due to its distortion effects. Model-based approaches have been used to address this, but such methods often suffer from artefacts associated with
Externí odkaz:
http://arxiv.org/abs/2402.19041
Autor:
Hill, P. R., Bull, D. R.
Classification of images within the compressed domain offers significant benefits. These benefits include reduced memory and computational requirements of a classification system. This paper proposes two such methods as a proof of concept: The first
Externí odkaz:
http://arxiv.org/abs/2110.06740
Autor:
Hill, P. R., Bull, D. R.
Image fusion methods and metrics for their evaluation have conventionally used pixel-based or low-level features. However, for many applications, the aim of image fusion is to effectively combine the semantic content of the input images. This paper p
Externí odkaz:
http://arxiv.org/abs/2110.06697
This paper describes the application of machine learning techniques to develop a state-of-the-art detection and prediction system for spatiotemporal events found within remote sensing data; specifically, Harmful Algal Bloom events (HABs). We propose
Externí odkaz:
http://arxiv.org/abs/1912.02305
Autor:
Bull, D. R.
The primary purpose of the work undertaken in this thesis is to investigate soliton scattering in the non linear CP² sigma model. This has two spatial and one temporal dimension. The vector fields used to represent the model have three components an
Externí odkaz:
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282833
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Scopus-Elsevier
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Improved illumination invariant homomorphic filtering using the dual tree complex wavelet transform.
Publikováno v:
2016 IEEE International Conference on Acoustics, Speech & Signal Processing (ICASSP); 2016, p1214-1218, 5p