Zobrazeno 1 - 10
of 1 435
pro vyhledávání: '"BUENO, H."'
Autor:
Gómez-Grande, A., Seiffert, A.P., Villarejo-Galende, A., González-Sánchez, M., Llamas-Velasco, S., Bueno, H., Gómez, E.J., Tabuenca, M.J., Sánchez-González, P.
Publikováno v:
In Revista Española de Medicina Nuclear e Imagen Molecular July-August 2023 42(4):211-217
In this paper we prove a Pohozaev-type identity for both the problem $(-\Delta+m^2)^su=f(u)$ in $\mathbb{R}^N$ and its harmonic extension to $\mathbb{R}^{N+1}_+$ when $0
Externí odkaz:
http://arxiv.org/abs/1810.07597
With appropriate hypotheses on the nonlinearity $f$, we prove the existence of a ground state solution $u$ for the problem \[\sqrt{-\Delta+m^2}\, u+Vu=\left(W*F(u)\right)f(u)\ \ \text{in }\ \mathbb{R}^{N},\] where $V$ is a bounded potential, not nece
Externí odkaz:
http://arxiv.org/abs/1802.03963
Autor:
Ambrosio, V.1 (AUTHOR), Bueno, H.2 (AUTHOR) hamilton@mat.ufmg.br, Medeiros, A. H. S.3 (AUTHOR), Pereira, G. A.4 (AUTHOR)
Publikováno v:
Bulletin of the Brazilian Mathematical Society. Dec2023, Vol. 54 Issue 4, p1-28. 28p.
Publikováno v:
Complex Variables & Elliptic Equations; Dec2024, Vol. 69 Issue 12, p2066-2089, 24p
Publikováno v:
Advanced Nonlinear Studies, Vol 20, Iss 4, Pp 847-865 (2020)
In this paper, we consider a class of critical concave convex Ambrosetti–Prodi type problems involving the fractional p-Laplacian operator. By applying the linking theorem and the mountain pass theorem as well, the interaction of the nonlinearities
Externí odkaz:
https://doaj.org/article/f7be4c58ba304839ae18c0a1aeaed9e8
Publikováno v:
In Journal of Differential Equations 5 January 2019 266(1):876-909
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
The Rocky Mountain Journal of Mathematics, 2018 Jan 01. 48(2), 425-442.
Externí odkaz:
https://www.jstor.org/stable/26499738
The critical set C of the operator F:H^2_D([0,pi]) -> L^2([0,pi]) defined by F(u)=-u''+f(u) is studied. Here X:=H^2_D([0,pi]) stands for the set of functions that satisfy the Dirichlet boundary conditions and whose derivatives are in L^2([0,pi]). For
Externí odkaz:
http://arxiv.org/abs/math/0102161