Zobrazeno 1 - 10
of 133
pro vyhledávání: '"BRINI, ANDREA"'
Autor:
Brini, Andrea, Schuler, Yannik
We study the enumerative geometry of stable maps to Calabi-Yau 5-folds $Z$ with a group action preserving the Calabi-Yau form. In the central case $Z=X \times \mathbb{C}^2$, where $X$ is a Calabi-Yau 3-fold with a group action scaling the holomorphic
Externí odkaz:
http://arxiv.org/abs/2410.00118
Autor:
Brini, Andrea, Teolis, Antonio
In this paper, we consider a special class of Capelli bitableaux, namely the Capelli-Deruyts bitableaux. The main results we prove are the hook coefficient lemma and the expansion theorem. Capelli-Deruyts bitableaux of rectangular shape are of partic
Externí odkaz:
http://arxiv.org/abs/2303.12412
Autor:
Brini, Andrea
This survey covers recent developments on the geometry and physics of Looijenga pairs, namely pairs $(X,D)$ with $X$ a complex algebraic surface and $D$ a singular anticanonical divisor in it. I will describe a surprising web of correspondences linki
Externí odkaz:
http://arxiv.org/abs/2211.11037
Autor:
Brini, Andrea, Schuler, Yannik
We prove a conjecture of Bousseau, van Garrel and the first-named author relating, under suitable positivity conditions, the higher genus maximal contact log Gromov-Witten invariants of Looijenga pairs to other curve counting invariants of Gromov-Wit
Externí odkaz:
http://arxiv.org/abs/2201.01645
Autor:
Brini, Andrea, Osuga, Kento
Publikováno v:
Lett Math Phys 112, 44 (2022)
We propose an effective framework for computing the prepotential of the topological B-model on a class of local Calabi--Yau geometries related to the circle compactification of five-dimensional $\mathcal{N}=1$ super Yang--Mills theory with simple gau
Externí odkaz:
http://arxiv.org/abs/2110.11638
Autor:
Brini, Andrea, Teolis, Antonio
In this paper are introduced two classes of elements in the enveloping algebra $\mathbf{U}(gl(n))$: the \emph{double Young-Capelli bitableaux} $[\ \fbox{$S \ | \ T$}\ ]$ and the \emph{central} \emph{Schur elements} $\mathbf{S}_{\lambda}(n)$, that act
Externí odkaz:
http://arxiv.org/abs/2107.10205
Autor:
Brini, Andrea, van Gemst, Karoline
Publikováno v:
Journal de l'\'Ecole polytechnique -- Math\'ematiques, Volume 9 (2022), pp. 907-957
We give a uniform, Lie-theoretic mirror symmetry construction for the Frobenius manifolds defined by Dubrovin-Zhang in arXiv:hep-th/9611200 on the orbit spaces of extended affine Weyl groups, including exceptional Dynkin types. The B-model mirror is
Externí odkaz:
http://arxiv.org/abs/2103.12673
Autor:
Brini, Andrea, Teolis, Antonio
The purpose of the present work is to provide short and supple teaching notes for a $30$ hours introductory course on elementary \textit{Enumerative Algebraic Combinatorics}. We fully adopt the \textit{Rota way}. The themes are organized into a suita
Externí odkaz:
http://arxiv.org/abs/2012.12691
Publikováno v:
Lett Math Phys 111, 109 (2021)
In arXiv:2011.08830 we established a series of correspondences relating five enumerative theories of log Calabi-Yau surfaces, i.e. pairs $(Y,D)$ with $Y$ a smooth projective complex surface and $D=D_1+\dots +D_l$ an anticanonical divisor on $Y$ with
Externí odkaz:
http://arxiv.org/abs/2012.10353
Publikováno v:
Geom. Topol. 28 (2024) 393-496
A log Calabi-Yau surface with maximal boundary, or Looijenga pair, is a pair $(Y,D)$ with $Y$ a smooth rational projective complex surface and $D=D_1+\dots + D_l \in |-K_Y|$ an anticanonical singular nodal curve. Under some positivity conditions on t
Externí odkaz:
http://arxiv.org/abs/2011.08830