Zobrazeno 1 - 10
of 68
pro vyhledávání: '"BOUALI, Mohamed"'
Autor:
Bouali, Mohamed
We investigate the convexity property on $(0,1)$ of the function $$f_a(x)=\frac{{\cal K}{(\sqrt x)}}{a-(1/2)\log(1-x)}.$$ We show that $f_a$ is strictly convex on $(0,1)$ if and only if $a\geq a_c$ and $1/f_a$ is strictly convex on $(0,1)$ if and onl
Externí odkaz:
http://arxiv.org/abs/2407.14547
Autor:
Bouali, Mohamed
A recently published result states inequalities of the harmonic mean of the digamma function. In this work, we prove among others results that for all positive real numbers $x\neq 1$, $$-\gamma<-\gamma H(x,1/x)<\frac{\gamma^2}{\psi\big(H(x,1/x)\big)}
Externí odkaz:
http://arxiv.org/abs/2405.05271
Autor:
Bouali, Mohamed
We investigate the convexity property on $(0,1)$ of the functions $\varphi_{a,b,c}$ and $1/\varphi_{a,b,c}$, where $$\varphi_{a,b,c}(x)= \frac{c-\log(1-x)}{\,_2F_1(a,b,a+b,x)},$$ whenever $a,b\geq 0$ and $a+b\leq 1$. We Show that $\varphi_{a,b,c}$ (r
Externí odkaz:
http://arxiv.org/abs/2403.09695
Autor:
Bouali, Mohamed
Motivated by open questions in the papers " Refinements and sharpenings of some double inequalities for bounding the gamma function" and "Complete monotonicity and monotonicity of two functions defined by two derivatives of a function involving triga
Externí odkaz:
http://arxiv.org/abs/2206.01527
Autor:
Bouali, Mohamed
Motivated by several conjectures posed in the paper " Completely monotonic degrees for a difference between the logarithmic and psi functions",we confirm in this work some conjectures on completely monotonic degrees of remainders of the asymptotic ex
Externí odkaz:
http://arxiv.org/abs/2202.01801
Autor:
Canet, Geoffrey, Gratuze, Maud, Zussy, Charleine, Bouali, Mohamed Lala, Diaz, Sofia Diego, Rocaboy, Emma, Laliberté, Francis, El Khoury, Noura B., Tremblay, Cyntia, Morin, Françoise, Calon, Frédéric, Hébert, Sébastien S., Julien, Carl, Planel, Emmanuel
Publikováno v:
In Neurobiology of Disease August 2024 198
Autor:
Bouali, Mohamed
We prove amongs others results that the harmonic mean of $\Gamma_q(x)$ and $\Gamma_q(1/x)$ is greater than or equal to $1$ for arbitrary $x > 0$ and $q\in J$ where $J$ is a subset of $[0,+\infty)$. Also, we prove that for there is $p_0\in(1,9/2)$, su
Externí odkaz:
http://arxiv.org/abs/2005.08945
Autor:
Bouali, Mohamed
In this work, we investigate a problem posed by Feng Qi and Bai-Ni Guo in their paper Complete monotonicities of functions involving the gamma and digamma functions.
Comment: 9 pages, 2 figures
Comment: 9 pages, 2 figures
Externí odkaz:
http://arxiv.org/abs/1804.09966
Autor:
Bouali, Mohamed
We investigate the product of $n$ complex non-Hermitian, independent random matrices, each of size $N\times N$ in the class of elliptic matrices, with independent identically distributed entries. The joint probability distribution of the complex eige
Externí odkaz:
http://arxiv.org/abs/1601.06353
Autor:
Bouali, Mohamed
We investigate the product of $n$ complex non-Hermitian, independent random matrices, each of size $N_i\times N_{i+1}$ $(i=1,...,n)$, with independent identically distributed Cauchy entries (Cauchy-Lorentz matrices). The joint probability distributio
Externí odkaz:
http://arxiv.org/abs/1512.08179