Zobrazeno 1 - 10
of 6 332
pro vyhledávání: '"BONETTI F"'
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol. 21 no. 3 , Combinatorics (June 5, 2019) dmtcs:5175
It is well-known that the set $\mathbf I_n$ of involutions of the symmetric group $\mathbf S_n$ corresponds bijectively - by the Foata map $F$ - to the set of $n$-permutations that avoid the two vincular patterns $\underline{123},$ $\underline{132}.$
Externí odkaz:
http://arxiv.org/abs/1902.02213
Autor:
Carolyn Dawn O'Hara, Paolo Nuciforo
Publikováno v:
Modern Pathology. 15:87-90
Autor:
Bonetti F; University of Rome Tor Vergata, Rome, Italy; Physioup Physiotherapy Practice, Rome, Italy. Electronic address: fra.bonetti@me.com., Angilecchia D; Department of Medicine and Health Science 'Vincenzio Tiberio', University of Molise, Campobasso, Italy; Rehabilitation Service-ASL, Bari, Italy., Agostini A; University of Rome Tor Vergata, Rome, Italy; Pain Unit. Santa Maria Maddalena Hospital. Advance Algology Research, via Gorizia, 2, 45030, Occhiobello, RO, Italy., Marighetto P; University of Rome Tor Vergata, Rome, Italy; Private Physiotherapy Practice, Castello di Godego, TV, Italy., Minnucci S; University of Rome Tor Vergata, Rome, Italy., Giglioni G; University of Rome Tor Vergata, Rome, Italy; Department of Rehabilitation, Asl Roma3, Rome, Italy., Pellicciari L; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy., Chiarotto A; Department of General Practice, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
Publikováno v:
Musculoskeletal science & practice [Musculoskelet Sci Pract] 2024 Nov; Vol. 74, pp. 103206. Date of Electronic Publication: 2024 Oct 21.
Autor:
Nuciforo PG, O'Hara CD
Publikováno v:
Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc [Mod Pathol] 2002 Jan; Vol. 15 (1), pp. 87-90.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Modern Pathology 1 January 2002 15(1):87-90
We exploit Krattenthaler's bijection between 123-avoiding permutations and Dyck paths to determine the Eulerian distribution over the set $S_n(123)$ of 123-avoiding permutations in $S_n$. In particular, we show that the descents of a permutation corr
Externí odkaz:
http://arxiv.org/abs/0910.0963
We exploit Krattenthaler's bijection between the set $S_n(3\textrm{-}1\textrm{-}2)$ of permutations in $S_n$ avoiding the classical pattern $3\textrm{-}1\textrm{-}2$ and Dyck $n$-paths to study the distribution of every consecutive pattern of length
Externí odkaz:
http://arxiv.org/abs/0904.0079
We show how a bijection due to Biane between involutions and labelled Motzkin paths yields bijections between Motzkin paths and two families of restricted involutions that are counted by Motzkin numbers, namely, involutions avoiding 4321 and 3412. As
Externí odkaz:
http://arxiv.org/abs/0812.0463
We define an analogue of signed Eulerian numbers $f_{n,k}$ for involutions of the symmetric group and derive some combinatorial properties of this sequence. In particular, we exhibit both an explicit formula and a recurrence for $f_{n,k}$ arising fro
Externí odkaz:
http://arxiv.org/abs/0803.2126