Zobrazeno 1 - 10
of 94
pro vyhledávání: '"BLECHER, AUBREY"'
Autor:
Blecher, Aubrey1 (AUTHOR) Aubrey.Blecher@wits.ac.za, Knopfmacher, Arnold1 (AUTHOR)
Publikováno v:
Aequationes Mathematicae. Aug2024, Vol. 98 Issue 4, p1133-1149. 17p.
Autor:
Blecher, Aubrey, Knopfmacher, Arnold
In a Dyck path a peak which is (weakly) higher than all the preceding peaks is called a strict (weak) left to right maximum. We obtain explicit generating functions for both weak and strict left to right maxima in Dyck paths. The proofs of the associ
Externí odkaz:
http://arxiv.org/abs/2107.03102
Autor:
ARCHIBALD, MARGARET1 Margaret.Archibald@wits.ac.za, BLECHER, AUBREY1 Aubrey.Blecher@wits.ac.za, KNOPFMACHER, ARNOLD1 Arnold.Knopfmacher@wits.ac.za
Publikováno v:
Transactions on Combinatorics. Spring2024, Vol. 13 Issue 1, p67-84. 18p.
Autor:
Archibald, Margaret, Blecher, Aubrey, Brennan, Charlotte, Knopfmacher, Arnold, Wagner, Stephan, Ward, Mark
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, vol. 22 no. 4, Analysis of Algorithms (January 28, 2021) dmtcs:5686
A sequence of geometric random variables of length $n$ is a sequence of $n$ independent and identically distributed geometric random variables ($\Gamma_1, \Gamma_2, \dots, \Gamma_n$) where $\mathbb{P}(\Gamma_j=i)=pq^{i-1}$ for $1~\leq~j~\leq~n$ with
Externí odkaz:
http://arxiv.org/abs/1806.04962
Autor:
Blecher, Aubrey1 (AUTHOR) Aubrey.Blecher@wits.ac.za, Brennan, Charlotte1 (AUTHOR) Charlotte.Brennan@wits.ac.za, Knopfmacher, Arnold1 (AUTHOR) Arnold.Knopfmacher@wits.ac.za, Mansour, Toufik2 (AUTHOR) tmansour@univ.haifa.ac.il
Publikováno v:
QM - Quaestiones Mathematicae. Oct2024, p1-15. 15p.
Publikováno v:
In Discrete Applied Mathematics 15 March 2022 309:130-137
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Blecher, Aubrey
A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy (by production of original research) in Mathematics School of Mathematics University of the Witwatersrand Johannesburg December 2012
Generating function
Generating function
Externí odkaz:
http://hdl.handle.net/10539/13015
Autor:
Blecher, Aubrey, Mansour, Toufik
The x-ray process is modelled using integer compositions as a two dimensional analogue of the object being x-rayed, where the examining rays are modelled by diagonal lines with equation $x-y=n$ for non negative integers $n$. This process is essential
Externí odkaz:
http://arxiv.org/abs/1508.02859
Publikováno v:
In Advances in Applied Mathematics January 2020 112