Zobrazeno 1 - 10
of 398
pro vyhledávání: '"BLAIS, Martin"'
Autor:
Ferludin, Oleksandr, Eigenwillig, Arno, Blais, Martin, Zelle, Dustin, Pfeifer, Jan, Sanchez-Gonzalez, Alvaro, Li, Wai Lok Sibon, Abu-El-Haija, Sami, Battaglia, Peter, Bulut, Neslihan, Halcrow, Jonathan, de Almeida, Filipe Miguel Gonçalves, Gonnet, Pedro, Jiang, Liangze, Kothari, Parth, Lattanzi, Silvio, Linhares, André, Mayer, Brandon, Mirrokni, Vahab, Palowitch, John, Paradkar, Mihir, She, Jennifer, Tsitsulin, Anton, Villela, Kevin, Wang, Lisa, Wong, David, Perozzi, Bryan
TensorFlow-GNN (TF-GNN) is a scalable library for Graph Neural Networks in TensorFlow. It is designed from the bottom up to support the kinds of rich heterogeneous graph data that occurs in today's information ecosystems. In addition to enabling mach
Externí odkaz:
http://arxiv.org/abs/2207.03522
Autor:
Miranda, Joyal, Côté, José, Godin, Gaston, Blais, Martin, Otis, Joanne, Guéhéneuc, Yann-Gaël, Fadel, Ghayas, Barton, Luisa, Fowler, Shawn
Publikováno v:
JMIR Research Protocols, Vol 2, Iss 2, p e39 (2013)
BackgroundIn the recent years, the Internet has been used as a medium to find sexual partners and engage in risky sexual behavior. This has changed the way in which men having have sex with men (MSM) seek sexual partners and has increased the number
Externí odkaz:
https://doaj.org/article/1506b81358594fb1ba87c81a4c58142b
Autor:
Cannas Aghedu, Fabio1 (AUTHOR), Blais, Martin2,3 (AUTHOR) blais.martin@uqam.ca, Séguin, Léa J.3 (AUTHOR), Côté, Isabel4 (AUTHOR)
Publikováno v:
PLoS ONE. 9/13/2024 c, Vol. 19 Issue 9, p1-18. 18p.
In this work we propose Pathfinder Discovery Networks (PDNs), a method for jointly learning a message passing graph over a multiplex network with a downstream semi-supervised model. PDNs inductively learn an aggregated weight for each edge, optimized
Externí odkaz:
http://arxiv.org/abs/2010.12878
Autor:
Kapoor, Amol, Ben, Xue, Liu, Luyang, Perozzi, Bryan, Barnes, Matt, Blais, Martin, O'Banion, Shawn
In this work, we examine a novel forecasting approach for COVID-19 case prediction that uses Graph Neural Networks and mobility data. In contrast to existing time series forecasting models, the proposed approach learns from a single large-scale spati
Externí odkaz:
http://arxiv.org/abs/2007.03113
Autor:
Bojchevski, Aleksandar, Gasteiger, Johannes, Perozzi, Bryan, Kapoor, Amol, Blais, Martin, Rózemberczki, Benedek, Lukasik, Michal, Günnemann, Stephan
Graph neural networks (GNNs) have emerged as a powerful approach for solving many network mining tasks. However, learning on large graphs remains a challenge - many recently proposed scalable GNN approaches rely on an expensive message-passing proced
Externí odkaz:
http://arxiv.org/abs/2007.01570
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Cannas Aghedu, Fabio, Blais, Martin, Philibert, Mathieu, Côté, Isabel, Samoilenko, Mariia, Chamberland, Line
Publikováno v:
In Social Science & Medicine December 2022 314
Autor:
Blais, Martin
Ce mémoire porte sur l’engagement civique du poète Gérald Godin durant les années précédant son entrée en politique lors des élections provinciales de 1976. Plus précisément, il aborde l’évolution de la trajectoire du poète entre le d
Externí odkaz:
https://hdl.handle.net/20.500.11794/25809