Zobrazeno 1 - 10
of 127
pro vyhledávání: '"BIRKBECK, CHRISTOPHER"'
Autor:
Brasca, Riccardo, Birkbeck, Christopher, Boidi, Eric Rodriguez, Best, Alex, van De Velde, Ruben, Yang, Andrew
We formalize a complete proof of the regular case of Fermat's Last Theorem in the Lean4 theorem prover. Our formalization includes a proof of Kummer's lemma, that is the main obstruction to Fermat's Last Theorem for regular primes. Rather than follow
Externí odkaz:
http://arxiv.org/abs/2410.01466
Publikováno v:
Revista de Ciencias Sociales, Vol 23, Iss 3, Pp 76-88 (2017)
Con el fin de someter a contraste las teorías de Asociación Diferencial, Control Social y General del delito, se analizó la relación entre conducta antisocial y los constructos de las teorías, a saber, “definiciones favorables” (Asociación
Externí odkaz:
https://doaj.org/article/99bfff1e90054a38abde89041580654d
We formalise the proof of the first case of Fermat's Last Theorem for regular primes using the \emph{Lean} theorem prover and its mathematical library \emph{mathlib}. This is an important 19th century result that motivated the development of modern a
Externí odkaz:
http://arxiv.org/abs/2305.08955
We give a new construction of $p$-adic overconvergent Hilbert modular forms by using Scholze's perfectoid Shimura varieties at infinite level and the Hodge--Tate period map. The definition is analytic, closely resembling that of complex Hilbert modul
Externí odkaz:
http://arxiv.org/abs/1902.03985
Autor:
Birkbeck, Christopher D.
We use results by Chenevier and Hansen to interpolate the classical Jacquet-Langlands correspondence for Hilbert modular forms, which gives an extension of Chenevier’s results to totally real fields. From this, in the case of totally real fields of
Externí odkaz:
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.731375
Autor:
Birkbeck, Christopher
We extend the results by R.P. Langlands on representations of (connected) abelian algebraic groups. This is done by considering characters into any divisible abelian topological group. With this we can then prove what is known as the abelian case of
Externí odkaz:
http://arxiv.org/abs/1811.04819
Autor:
Birkbeck, Christopher
We show that for arithmetic weights with a fixed finite order character, the slopes of $U_p$ (for $p=2$) acting on overconvergent Hilbert modular forms of level $U_0(4)$ are independent of the (algebraic part of the) weight and can be obtained by a s
Externí odkaz:
http://arxiv.org/abs/1811.04799
Autor:
Birkbeck, Christopher
We give an explicit description of the matrix associated to the $U_p$ operator acting on spaces of overconvergent Hilbert modular forms over totally real fields. Using this, we compute slopes for weights in the centre and near the boundary of weight
Externí odkaz:
http://arxiv.org/abs/1710.09769
Autor:
Birkbeck, Christopher, Feng, Tony, Hansen, David, Hong, Serin, Li, Qirui, Wang, Anthony, Ye, Lynnelle
Publikováno v:
J. Inst. Math. Jussieu 21 (2022) 487-532
We completely classify the possible extensions between semistable vector bundles on the Fargues-Fontaine curve (over an algebraically closed perfectoid field), in terms of a simple condition on Harder-Narasimhan polygons. Our arguments rely on a care
Externí odkaz:
http://arxiv.org/abs/1705.00710