Zobrazeno 1 - 10
of 111
pro vyhledávání: '"BILIOTTI, LEONARDO"'
Let $M_i$, for $i=1,2$, be a K\"ahler manifold, and let $G$ be a Lie group acting on $M_i$ by K\"ahler isometries. Suppose that the action admits a momentum map $\mu_i$ and let $N_i:=\mu_i^{-1}(0)$ be a regular level set. When the action of $G$ on $N
Externí odkaz:
http://arxiv.org/abs/2412.15424
We presented a Hilbert-Mumford criterion for polystablility associated with an action of a real reductive Lie group $G$ on a real submanifold $X$ of a Kahler manifold $Z$. Suppose the action of a compact Lie group with Lie algebra $\mathfrak{u}$ exte
Externí odkaz:
http://arxiv.org/abs/2309.01138
We study the singularities of commuting vector fields of a real submanifold of a K\"ahler manifold $Z$.
Comment: arXiv admin note: substantial text overlap with arXiv:2205.04395
Comment: arXiv admin note: substantial text overlap with arXiv:2205.04395
Externí odkaz:
http://arxiv.org/abs/2301.02036
Autor:
Biliotti, Leonardo
Let $G$ be a Lie group acting properly on a smooth manifold $M$. If $M/G$ is connected, then we exhibit some simple and basic constructions for proper actions. In particular, we prove that the reduction principle in compact transformation groups hold
Externí odkaz:
http://arxiv.org/abs/2212.06715
Autor:
Biliotti, Leonardo
Let $G$ be a connected semisimple noncompact real Lie group and let $\rho: G \longrightarrow \mathrm{SL}(V)$ be a representation on a finite dimensional vector space $V$ over $\mathbb R$, with $\rho(G)$ closed in $\mathrm{SL}(V)$. Identifying $G$ wit
Externí odkaz:
http://arxiv.org/abs/2205.15632
We presented a systematic treatment of a Hilbert criterion for stability theory for an action of a real reductive group $G$ on a real submanifold $X$ of a K\"ahler manifold $Z$. More precisely, we suppose the action of a compact connected Lie group $
Externí odkaz:
http://arxiv.org/abs/2205.04395
Let $(Z,\omega)$ be a \Keler manifold and let $U$ be a compact connected Lie group with Lie algebra $\mathfrak{u}$ acting on $Z$ and preserving $\omega$. We assume that the $U$-action extends holomorphically to an action of the complexified group $U^
Externí odkaz:
http://arxiv.org/abs/2106.13074
Autor:
Biliotti, Leonardo, Windare, Joshua O.
We study the action of a real reductive group $G$ on a real submanifold $X$ of a Kahler manifold $Z$. We suppose that the action of a compact connected Lie group $U$ with Lie algebra $\mathfrak{u}$ extends holomorphically to an action of the complexi
Externí odkaz:
http://arxiv.org/abs/2105.05765
Autor:
Biliotti, Leonardo
Let $(Z,\omega)$ be a connected Kahler manifold with an holomorphic action of the complex reductive Lie group $U^{\mathbb C}$, where $U$ is a compact connected Lie group acting in a hamiltonian fashion. Let $G$ be a closed compatible Lie group of $U^
Externí odkaz:
http://arxiv.org/abs/2101.09733
Autor:
Biliotti, Leonardo
Let $G$ be a real semisimple Lie group with finite center and let $\mathfrak g=\mathfrak k \oplus \mathfrak p$ be a Cartan decomposition of its Lie algebra. Let $K$ be a maximal compact subgroup of $G$ with Lie algebra $\mathfrak k$ and let $\tau$ be
Externí odkaz:
http://arxiv.org/abs/2012.14858