Zobrazeno 1 - 10
of 585
pro vyhledávání: '"BIANCHI ALESSANDRA"'
In this paper, we are interested in the mixing behaviour of simple random walks on inhomogeneous directed graphs. We focus our study on the Chung-Lu digraph, which is an inhomogeneous network that generalizes the Erd\H{o}s-R\'enyi digraph. In particu
Externí odkaz:
http://arxiv.org/abs/2402.15356
We consider a random walk $Y$ moving on a \emph{L\'evy random medium}, namely a one-dimensional renewal point process with inter-distances between points that are in the domain of attraction of a stable law. The focus is on the characterization of th
Externí odkaz:
http://arxiv.org/abs/2206.02271
Publikováno v:
ALEA, Lat. Am. J. Probab. Math. Stat. 19, 1679-1695 (2022)
We consider the two-star model, a family of exponential random graphs indexed by two real parameters, $h$ and $\alpha$, that rule respectively the total number of edges and the mutual dependence between them. Borrowing tools from statistical mechanic
Externí odkaz:
http://arxiv.org/abs/2107.08889
We consider the edge-triangle model, a two-parameter family of exponential random graphs in which dependence between edges is introduced through triangles. In the so-called replica symmetric regime, the limiting free energy exists together with a com
Externí odkaz:
http://arxiv.org/abs/2105.06312
Autor:
Castro, Candida, Pablo Doncel, P., Ledesma, Rubén D., Montes, Silvana A., Daniela Barragan, D., Oviedo-Trespalacios, Oscar, Bianchi, Alessandra, Kauer, Natalia, Qu, Weina, Padilla, Jose-Luis
Publikováno v:
In Accident Analysis and Prevention February 2024 195
Publikováno v:
Electron. J. Probab. 26 (2021), article no. 57, 1-25
We study a random walk on a point process given by an ordered array of points $(\omega_k, \, k \in \mathbb{Z})$ on the real line. The distances $\omega_{k+1} - \omega_k$ are i.i.d. random variables in the domain of attraction of a $\beta$-stable law,
Externí odkaz:
http://arxiv.org/abs/2007.03384
Autor:
Sterlini, Bruno, Franchi, Francesca, Morinelli, Lisastella, Corradi, Beatrice, Parodi, Chiara, Albini, Martina, Bianchi, Alessandra, Marte, Antonella, Baldelli, Pietro, Alberini, Giulio, Maragliano, Luca, Valente, Pierluigi, Benfenati, Fabio, Corradi, Anna
Publikováno v:
In Neurobiology of Disease July 2023 183
Publikováno v:
Stochastic Process. Appl. 130 (2020), no. 2, 708-732
We consider a continuous-time random walk which is defined as an interpolation of a random walk on a point process on the real line. The distances between neighboring points of the point process are i.i.d. random variables in the normal domain of att
Externí odkaz:
http://arxiv.org/abs/1806.02278
Autor:
Prado, Aneliana da Silva, Baldofski, Sabrina, Kohls, Elisabeth, Bianchi, Alessandra Sant'Anna, Oda, Fernanda Suemi, Freitas, Joanneliese de Lucas, Rummel-Kluge, Christine
Publikováno v:
BJPsych Open; Nov2024, Vol. 10 Issue 6, p1-9, 9p
Publikováno v:
Electronic Journal of Probability 2017, Vol. 22, no. 70, 1-34
We study the condensation regime of the finite reversible inclusion process, i.e., the inclusion process on a finite graph $S$ with an underlying random walk that admits a reversible measure. We assume that the random walk kernel is irreducible and i
Externí odkaz:
http://arxiv.org/abs/1605.05140