Zobrazeno 1 - 10
of 89
pro vyhledávání: '"BHOWMIK, SAMIR KUMAR"'
In this article we consider a generalized equal width wave (GEW) equation which is a significant nonlinear wave equation as it can be used to model many problems occurring in applied sciences. As the analytic solution of the (GEW) equation of this ki
Externí odkaz:
http://arxiv.org/abs/1904.05145
The generalized regularized long wave (GRLW) equation has been developed to model a variety of physical phenomena such as ion-acoustic and magnetohydrodynamic waves in plasma, nonlinear transverse waves in shallow water and phonon packets in nonlinea
Externí odkaz:
http://arxiv.org/abs/1904.03354
Publikováno v:
In Wave Motion April 2023 118
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
KARAKOÇ, Seydi Battal Gazi1 sbgkarakoc@nevsehir.edu.tr, BHOWMIK, Samir Kumar2, OMRANI, Khaled3, YILDIRIM SUCU, Derya1
Publikováno v:
Sigma: Journal of Engineering & Natural Sciences / Mühendislik ve Fen Bilimleri Dergisi. Aug2023, Vol. 41 Issue 4, p875-884. 10p.
Publikováno v:
In Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena June 2021 147
Autor:
Alshomrani, Ali, Bhowmik, Samir Kumar
Integral operators play an important role modeling various physical and biological processes. In this article we consider such a nonlinear integro-differential equation. We study several properties of equilibrium solutions of the operator considering
Externí odkaz:
http://arxiv.org/abs/1505.05107
Autor:
Bhowmik, Samir Kumar
Higher order boundary value problems (BVPs) play an important role modeling various scientific and engineering problems. In this article we develop an efficient numerical scheme for linear $m^{th}$ order BVPs. First we convert the higher order BVP to
Externí odkaz:
http://arxiv.org/abs/1404.5032
Starting with some fundamental concepts, in this article we present the essential aspects of spectral methods and their applications to the numerical solution of Partial Differential Equations (PDEs). We start by using Lagrange and Techbychef orthogo
Externí odkaz:
http://arxiv.org/abs/1403.5733