Zobrazeno 1 - 6
of 6
pro vyhledávání: '"BHANJA, KOUSTAV"'
Autor:
Bhanja, Koustav
Let $G=(V,E)$ be an undirected weighted graph on $n=|V|$ vertices and $S\subseteq V$ be a Steiner set. Steiner mincut is a well-studied concept, which provides a generalization to both (s,t)-mincut (when $|S|=2$) and global mincut (when $|S|=n$). Her
Externí odkaz:
http://arxiv.org/abs/2409.17715
Autor:
Bhanja, Koustav
Let $G=(V,E)$ be an undirected multi-graph on $n=|V|$ vertices and $S\subseteq V$ be a Steiner set. Steiner cut is a fundamental concept; moreover, global cut $(|S|=n)$, as well as (s,t)-cut $(|S|=2)$, is just a special case of Steiner cut. We study
Externí odkaz:
http://arxiv.org/abs/2406.15129
Autor:
Baswana, Surender, Bhanja, Koustav
Let G be a directed weighted graph (DiGraph) on n vertices and m edges with source s and sink t. An edge in G is vital if its removal reduces the capacity of (s,t)-mincut. Since the seminal work of Ford and Fulkerson, a long line of work has been don
Externí odkaz:
http://arxiv.org/abs/2310.12096
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
ACM Transactions on Algorithms; Oct2023, Vol. 19 Issue 4, p1-41, 41p
Let G be a directed multi-graph on n vertices and m edges with a designated source vertex s and a designated sink vertex t. We study the (s,t)-cuts of capacity minimum+1 and as an important application of them, we give a solution to the dual edge sen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4e98995a1d39d076c527a0cbd07715f1