Zobrazeno 1 - 10
of 50
pro vyhledávání: '"BEARDSLEY, JONATHAN"'
Autor:
Beardsley, Jonathan, Fox, Landon
In this paper we continue Prasma's homotopical group theory program by considering homotopy normal maps in arbitrary $\infty$-topoi. We show that maps of group objects equipped with normality data, in Prasma's sense, are algebras for a "normal closur
Externí odkaz:
http://arxiv.org/abs/2407.21210
Autor:
Beardsley, Jonathan, Nakamura, So
We describe a fully faithful embedding of projective geometries, given in terms of closure operators, into $\mathbb{F}_1$-modules, in the sense of Connes and Consani. This factors through a faithful functor out of simple pointed matroids. This follow
Externí odkaz:
http://arxiv.org/abs/2404.04730
We compute the first two k-invariants of the Picard spectra of $KU$ and $KO$ by analyzing their Picard groupoids and constructing their unit spectra as global sections of sheaves on the category of manifolds. This allows us to determine the E_\infty-
Externí odkaz:
http://arxiv.org/abs/2306.10112
Autor:
Beardsley, Jonathan, Hackney, Philip
Publikováno v:
J. Pure Appl. Algebra 228 (2024), no. 2, 107471
We prove Steinebrunner's conjecture on the biequivalence between (colored) properads and labelled cospan categories. The main part of the work is to establish a 1-categorical, strict version of the conjecture, showing that the category of properads i
Externí odkaz:
http://arxiv.org/abs/2206.00698
Autor:
Beardsley, Jonathan, Lawson, Tyler
Publikováno v:
In Advances in Mathematics November 2024 457
Autor:
Beardsley, Jonathan, Lawson, Tyler
We define a notion of a connectivity structure on an $\infty$-category, analogous to a $t$-structure but applicable in unstable contexts -- such as spaces, or algebras over an operad. This allows us to generalize notions of n-skeleta, minimal skeleta
Externí odkaz:
http://arxiv.org/abs/2110.09595
Autor:
Beardsley, Jonathan, Hackney, Philip
Publikováno v:
In Journal of Pure and Applied Algebra February 2024 228(2)
We show that there is an equivalence in any $n$-topos $\mathcal{X}$ between the pointed and $k$-connective objects of $\mathcal{X}$ and the $\mathbb{E}_k$-group objects of the $(n-k-1)$-truncation of $\mathcal{X}$. This recovers, up to equivalence of
Externí odkaz:
http://arxiv.org/abs/1909.11724
Autor:
Beardsley, Jonathan
This paper lays some of the foundations for working with not-necessarily-commutative bialgebras and their categories of comodules in $\infty$-categories. We prove that the categories of comodules and modules over a bialgebra always admit suitably str
Externí odkaz:
http://arxiv.org/abs/1810.00734
Autor:
Beardsley, Jonathan, Wong, Liang Ze
Publikováno v:
Theory.Appl.Categ. 34 (2019) 349-374
We relate the relative nerve $\mathrm{N}_f(\mathcal{D})$ of a diagram of simplicial sets $f \colon \mathcal{D} \to \mathsf{sSet}$ with the Grothendieck construction $\mathsf{Gr} F$ of a simplicial functor $F \colon \mathcal{D} \to \mathsf{sCat}$ in t
Externí odkaz:
http://arxiv.org/abs/1808.08020