Zobrazeno 1 - 10
of 86
pro vyhledávání: '"BAYRAM, Ergin"'
Autor:
Bayram, Ergin
Publikováno v:
In Optik February 2023 272
In the present paper, we find a surface family possessing the natural lift of a given timelike curve as a asymptotic in Minkowski 3-space. We express necessary and sufficient conditions for the given curve such that its natural lift is a asymptotic o
Externí odkaz:
http://arxiv.org/abs/1602.04165
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bayram, Ergin, Kasap, Emin
In the present paper, we handle the problem of finding a hypersurface family from a given asymptotic curve in R^4. Using the Frenet frame of the given asymptotic curve, we express the hypersurface as a linear combination of this frame and analyze the
Externí odkaz:
http://arxiv.org/abs/1408.6386
Surfaces and curves play an important role in geometric design. In recent years, problem of finding a surface passing through a given curve has attracted much interest. In the present paper, we propose a new method to construct a surface interpolatin
Externí odkaz:
http://arxiv.org/abs/1406.1342
Surfaces and curves play an important role in geometric design. In recent years, problem of finding a surface passing through a given curve have attracted much interest. In the present paper, we propose a new method to construct a surface interpolati
Externí odkaz:
http://arxiv.org/abs/1406.0618
Autor:
Bayram, Ergin, Kasap, Emin
Let $\alpha $ be an arc on a connected oriented surface $S$ in Minkowski 3-space, parameterized by arc length $s$, with torsion $\tau $ and length $l$. The total square torsion $H$ of $\alpha $ is defined by $% H=\int_{0}^{l}\tau ^{2}ds$. The arc is
Externí odkaz:
http://arxiv.org/abs/1306.4670
Autor:
Bayram, Ergin, Kasap, Emin
Let {\alpha}(s) be an arc on a connected oriented surface S in E3, parameterized by arc length s, with torsion {\tau} and length l. The total square torsion F of {\alpha} is defined by T=\int_{0}^{l}\tau ^{2}ds\ $. . The arc {\alpha} is called a rela
Externí odkaz:
http://arxiv.org/abs/1306.4431
Autor:
Bayram, Ergin, Kasap, Emin
Publikováno v:
Scientific Studies and Research Series Mathematics and Informatics Vol. 24(2014), No. 2, 5-24
In this paper, we study the problem of finding a hypersurface family from a given spatial geodesic curve in R4. We obtain the parametric representation for a hypersurface family whose members have the same curve as a given geodesic curve. Using the F
Externí odkaz:
http://arxiv.org/abs/1305.0411
In this paper, we express surfaces parametrically through a given spacelike (timelike) asymptotic curve using the Frenet frame of the curve in Minkowski 3-space. Necessary and sufficient conditions for the coefficients of the Frenet frame to satisfy
Externí odkaz:
http://arxiv.org/abs/1305.0382