Zobrazeno 1 - 10
of 53
pro vyhledávání: '"BARBULESCU, RAZVAN"'
Autor:
Barbulescu, Razvan, Poulalion, Adrien
Unit group computations are a cryptographic primitive for which one has a fast quantum algorithm, but the required number of qubits is $\tilde O(m^5)$. In this work we propose a modification of the algorithm for which the number of qubits is $\tilde
Externí odkaz:
http://arxiv.org/abs/2303.03978
Autor:
Barbulescu, Razvan, Jouve, Florent
The complexity of the elliptic curve method of factorization (ECM) is proven under the celebrated conjecture of existence of smooth numbers in short intervals. In this work we tackle a different version of ECM which is actually much more studied and
Externí odkaz:
http://arxiv.org/abs/2212.11724
Autor:
Barbulescu, Razvan, Ray, Jishnu
In this paper we make a series of numerical experiments to support Greenberg's $p$-rationality conjecture, we present a family of $p$-rational biquadratic fields and we find new examples of $p$-rational multiquadratic fields. In the case of multiquad
Externí odkaz:
http://arxiv.org/abs/1706.04847
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Barbulescu, Razvan
Dans cette thèse nous examinons en détail le problème du logarithme discret dans les corps finis. Dans la première partie, nous nous intéressons à la notion de friabilité et à l'algorithme ECM, le plus rapide test de friabilité connu. Nous p
Externí odkaz:
http://www.theses.fr/2013LORR0183/document
Autor:
BARBULESCU, Razvan, RAY, Jishnu
Publikováno v:
Journal de Théorie des Nombres de Bordeaux, 2020 Jan 01. 32(1), 159-177.
Externí odkaz:
https://www.jstor.org/stable/26939656
We propose various strategies for improving the computation of discrete logarithms in non-prime fields of medium to large characteristic using the Number Field Sieve. This includes new methods for selecting the polynomials; the use of explicit automo
Externí odkaz:
http://arxiv.org/abs/1408.0718
Autor:
Barbulescu, Razvan, Lachand, Armand
In this work, we consider the proportion of smooth (free of large prime factors) values of a binary form $F(X_1,X_2)\in\Z[X_1,X_2]$. In a particular case, we give an asymptotic equivalent for this proportion which depends on $F$. This is related to M
Externí odkaz:
http://arxiv.org/abs/1403.0184
In the present work, we present a new discrete logarithm algorithm, in the same vein as in recent works by Joux, using an asymptotically more efficient descent approach. The main result gives a quasi-polynomial heuristic complexity for the discrete l
Externí odkaz:
http://arxiv.org/abs/1306.4244
Autor:
Barbulescu, Razvan
The Function Field Sieve algorithm is dedicated to computing discrete logarithms in a finite field GF(q^n), where q is small an prime power. The scope of this article is to select good polynomials for this algorithm by defining and measuring the size
Externí odkaz:
http://arxiv.org/abs/1303.1998