Zobrazeno 1 - 10
of 247
pro vyhledávání: '"BANKS, JEFFREY"'
New implicit and implicit-explicit time-stepping methods for the wave equation in second-order form are described with application to two and three-dimensional problems discretized on overset grids. The implicit schemes are single step, three levels
Externí odkaz:
http://arxiv.org/abs/2404.14592
Publikováno v:
In Journal of Computational Physics 1 January 2025 520
We describe a new approach to derive numerical approximations of boundary conditions for high-order accurate finite-difference approximations. The approach, called the Local Compatibility Boundary Condition (LCBC) method, uses boundary conditions and
Externí odkaz:
http://arxiv.org/abs/2111.02915
Autor:
Xia, Qing, Banks, Jeffrey W., Henshaw, William D., Kildishev, Alexander V., Kovačič, Gregor, Prokopeva, Ludmila J., Schwendeman, Donald W.
We describe a fourth-order accurate finite-difference time-domain scheme for solving dispersive Maxwell's equations with nonlinear multi-level carrier kinetics models. The scheme is based on an efficient single-step three time-level modified equation
Externí odkaz:
http://arxiv.org/abs/2108.09519
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A stable added-mass partitioned (AMP) algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and compressible elastic solids. Deforming composite grids are used to effectively handle the evolving g
Externí odkaz:
http://arxiv.org/abs/1812.05208
A stable added-mass partitioned (AMP) algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and compressible elastic-solids. The AMP scheme remains stable and second-order accurate even when added
Externí odkaz:
http://arxiv.org/abs/1812.03192
Publikováno v:
Journal of Computational Physics, 392, 483-510 (2019)
The Galerkin difference (GD) basis is a set of continuous, piecewise polynomials defined using a finite difference like grid of degrees of freedom. The one dimensional GD basis functions are naturally extended to multiple dimensions using the tensor
Externí odkaz:
http://arxiv.org/abs/1806.06103
Autor:
Xia, Qing, Banks, Jeffrey W., Henshaw, William D., Kildishev, Alexander V., Kovačič, Gregor, Prokopeva, Ludmila J., Schwendeman, Donald W.
Publikováno v:
In Journal of Computational Physics 1 May 2022 456