Zobrazeno 1 - 10
of 16
pro vyhledávání: '"BAE JUN PARK"'
Publikováno v:
Canadian Journal of Mathematics. :1-28
In this work we obtain the pointwise almost everywhere convergence for two families of multilinear operators: (a) truncated homogeneous singular integral operators associated with $L^q$ functions on the sphere and (b) lacunary multiplier operators of
Publikováno v:
Transactions of the American Mathematical Society. 376:3445-3472
The L p L^p boundedness theory of convolution operators is based on an initial L 2 → L 2 L^2\to L^2 estimate derived from the Fourier transform. The corresponding theory of multilinear operators lacks such a simple initial estimate in view of the u
Autor:
Danqing He, Bae Jun Park
Publikováno v:
Mathematische Annalen.
We study bilinear rough singular integral operators $\mathcal{L}_{\Omega}$ associated with a function $\Omega$ on the sphere $\mathbb{S}^{2n-1}$. In the recent work of Grafakos, He, and Slav\'ikov\'a (Math. Ann. 376: 431-455, 2020), they showed that
Autor:
Bae Jun Park, Loukas Grafakos
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 201:111-126
In this article, we provide a multilinear version of the Hormander multiplier theorem with a Lorentz–Sobolev space condition. The work is motivated by the recent result of the first author and Slavikova [12] where an analogous version of classical
Autor:
Jongho Lee, Sunggeum Hong, Bae Jun Park, Jin Bong Lee, Yejune Park, Yaryong Heo, Chan Woo Yang
Publikováno v:
Mathematische Annalen. 381:499-555
In this paper, we study the Hormander multiplier theorem for multilinear operators. We generalize the result of Tomita (J Funct Anal 259(8):2028–2044, 2010) to wider target spaces and extend that of Grafakos and Van Nguyen (Monatsh Math 190(4):735
Autor:
Bae Jun Park
Publikováno v:
Constructive Approximation. 55:705-741
We study multiplier theorems on a vector-valued function space, which is a generalization of the results of Calder\'on-Torchinsky and Grafakos-He-Honz\'ik-Nguyen, and an improvement of the result of Triebel. For $0\frac{d}{s-(d/\min{(1,p,q)}-d)}$, th
Autor:
Bae Jun Park
Publikováno v:
Monatshefte für Mathematik. 194:291-304
In this paper we provide an improved BMO version of the Mikhlin–Hormander multiplier theorem for multilinear operators.
Autor:
Bae Jun Park
Publikováno v:
Indiana University Mathematics Journal. 70:1677-1716
In this paper we present (quasi-)norm equivalence on a vector-valued function space $L^p_A(l^q)$ and extend the equivalence to $p=\infty$ and $0
Comment: To appear in Indiana Univ. Math. J
Comment: To appear in Indiana Univ. Math. J
Autor:
Bae Jun Park
Publikováno v:
Potential Analysis. 56:87-96
We study a multilinear version of H\"ormander multiplier theorem, namely \begin{equation*} \Vert T_{\sigma}(f_1,\dots,f_n)\Vert_{L^p}\lesssim \sup_{k\in\mathbb{Z}}{\Vert \sigma(2^k\cdot,\dots,2^k\cdot)\widehat{\phi^{(n)}}\Vert_{L^{2}_{(s_1,\dots,s_n)
Autor:
Bae Jun Park
Publikováno v:
Studia Mathematica. 250:129-162
Pseudo-differential operators of type $(1,1)$ and order $m$ are continuous from $F_p^{s+m,q}$ to $F_p^{s,q}$ if $s>d/\min{(1,p,q)}-d$ for $0 d/\min{(1,p)}-d$ for $0