Zobrazeno 1 - 10
of 20
pro vyhledávání: '"B. Venkatesudu"'
Publikováno v:
Finite Elements in Analysis and Design. 44:920-932
This paper is concerned with curved boundary triangular elements having one curved side and two straight sides. The curved elements considered here are the 6-node (quadratic), 10-node (cubic), 15-node (quartic) and 21-node (quintic) triangular elemen
Publikováno v:
Applied Mathematics and Computation. 191:397-409
In this paper it is proposed to compute the volume integral of certain functions whose antiderivates with respect to one of the variates (say either x or y or z) is available. Then by use of the well known Gauss Divergence theorem, it can be shown th
Publikováno v:
Applied Mathematics and Computation. 190:186-194
This paper presents a Gaussian Quadrature method for the evaluation of the triple integral ∫ ∫ T ∫ f ( x , y , z ) d x d y d z , where f ( x , y , z ) is an analytic function in x, y, z and T refers to the standard tetrahedral region: { ( x , y
Publikováno v:
Applied Mathematics and Computation. 190:21-39
This paper first presents a Gauss Legendre quadrature rule for the evaluation of I = ∫ ∫T f (x, y) d x d y, where f (x, y) is an analytic function in x, y and T is the standard triangular surface: {(x, y) | 0 ≤ x, y ≤ 1, x + y ≤ 1} in the t
Publikováno v:
Applied Mathematics and Computation. 189:131-162
In this paper we first present a Gauss-Legendre quadrature rule for the evaluation of I = f f T ff(x,y,z)dxdydz, where f(X,y,z) is an analytic function in x, y, z and Tis the standard tetrahedral region: {(x,y,z)|0 ≤ x,y,z ≤ I, x + y + z ≤ 1} i
Publikováno v:
Applied Mathematics and Computation. 188:865-876
This paper first presents a Gauss Legendre quadrature method for numerical integration of I = ∫ ∫ T f ( x , y ) d x d y , where f ( x , y ) is an analytic function in x , y and T is the standard triangular surface: {( x , y )∣0 ⩽ x , y ⩽ 1,
Publikováno v:
International Journal for Computational Methods in Engineering Science and Mechanics. 7:445-459
In this paper, we first present a Gauss Legendre Quadrature rule for the evaluation of I = ∫∫∫T f(x,y,z) dxdydz , where f(x,y,z) is an analytic function in x,y,z and T is the standard tetrahedral region: {(x,y,z) |0 ≤ x,y,z ≤ 1,x + y + z
Publikováno v:
International Journal for Computational Methods in Engineering Science and Mechanics. 6:179-186
In this paper we consider the Gauss Legendre quadrature method for numerical integration over the standard tetrahedron: {(x, y, z)| 0 ≤ x, y, z ≤ 1, x + y + z ≤ 1} in the Cartesian three-dimensional (x, y, z) space. The mathematical transformat
Publikováno v:
Numerical Methods for Partial Differential Equations. 22:197-219
In this article we consider the Gauss Legendre Quadrature method for numerical integration over the standard tetrahedron: {(x, y, z)|0 ≤ x, y, z ≤ 1, x + y + z ≤ 1} in the Cartesian three-dimensional (x, y, z) space. The mathematical transforma
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.