Zobrazeno 1 - 10
of 15
pro vyhledávání: '"B. R. Vaĭnberg"'
Autor:
B R Vaĭnberg
Publikováno v:
Mathematics of the USSR-Sbornik. 73:289-304
Suppose , is a homogeneous hyperbolic matrix, is the operator taking the Cauchy data for the system for into the corresponding data at time , and is the analogous operator constructed from the exterior mixed problem for the hyperbolic system . It is
Autor:
P. K. Suetin, B. I. Golubov, A. F. Leont’ev, M. I. Voĭtsekhovskiĭ, S. A. Aĭvazyan, A. Shtern, L. V. Kuz’min, A. A. Sapozhenko, K. A. Borovkov, M. S. Nikulin, V. P. Maslov, P. S. Modenov, A. I. Shtern, A. G. Dragalin, Vik. S. Kulikov, V. I. Nechaev, E. P. Dolzhenko, E. D. Solomentsev, T. P. Lukashenko, Yu. N. Subbotin, L. D. Ivanov, A. V. Arkhangel’skiĭ, V. I. Ponomarev, E. B. Vinberg, S. A. Telyakovskiĭ, I. I. Volkov, S. N. Smirnov, A. V. Tolstikov, S. A. Stepanov, V. M. Babich, D. D. Sokolov, L. D. Kudryavtsev, D. N. Zubarev, I. V. Proskuryakov, R. A. Minlos, Yu. P. Ivanilov, V. V. Okhrimenko, N. N. Vorob’ev, B. A. Pasynkov, M. Sh. Tsalenko, A. D. Kuz’min, B. L. Laptev, V. S. Malakhovskiĭ, V. I. Malykhin, T. S. Fofanova, A. L. Onishchik, V. E. Plisko, V. N. Latyshev, A. I. Kostrikin, I. V. Dolgachev, Yu. I. Yanov, Yu. I. Merzlyakov, O. A. Ivanova, A. N. Parshin, S. N. Artemov, G. S. Asanov, A. D. Aleksandrov, V. N. Berestovskiĭ, A. P. Soldatov, A. B. Ivanov, N. N. Ladis, A. V. Prokhorov, N. N. Vil’yams, V. I. Sobolev, O. M. Fomenko, Yu. S. Il’yashenko, D. V. Alekseevskiĭ, L. A. Sidorov, V. E. Govorov, V. I. Danilov, Yu. V. Komlenko, D. V. Anosov, V. B. Alekseev, V. T. Bazylev, A. F. Andreev, N. V. Butenin, V. N. Grishin, V. L. Popov, Yu. G. Zarkhin, A. V. Gladkiĭ, S. S. Marchenkov, G. Rozenberg, A. Salomaa, S. B. Pokrovskiĭ, L. N. Karmazina, E. A. Bredikhina, P. I. Lizorkin, B. R. Vaĭnberg, M. V. Fedoryuk, A. A. Konyushkov, V. A. Morozov, V. S. Vladimirov, D. M. Smirnov, L. A. Bokut’, E. M. Chirka, S. G. Kreĭn, N. N. Yanenko, V. I. Fabrikant, M. K. Samarin, V. M. Tikhomorov, V. M. Tikhomirov, V. A. Zalgaller, B. V. Khvedelidze, A. B. Bakushinskiĭ, G. L. Litvinov, L. A. Skornyakov, D. A. Vladimirov, A. L. Shmel’kin, L. N. Shevrin, G. A. Leonov, I. G. Koshevnikova, D. F. Kalinichenko, N. V. Miroshin, V. N. Remeslennikov, V. V. Fedorchuk, S. M. Nikol’skiĭ, Yu. M. Berezanskiĭ, B. M. Levitan, N. K. Nikol’skiĭ, V. V. Peller, I. B. Vapnyarskiĭ, D. F. Davidenko, M. G. Shur, V. B. Kudryavtsev, P. L. Ul’yanov, S. N. Malygin, M. M. Postnikov, A. V. Khokhlov, V. M. Millionshchikov
Publikováno v:
Encyclopaedia of Mathematics ISBN: 9780792329749
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::96a9049b232f56a343102756078b3577
https://doi.org/10.1007/978-1-4899-3795-7_4
https://doi.org/10.1007/978-1-4899-3795-7_4
Autor:
H. P. Barendregt, I. V. Dolgachev, G. Rozenberg, A. Salomaa, A. P. Soldatov, A. F. Leont’ev, V. F. Emel’yanov, I. P. Egorov, N. Kh. Rozov, V. V. Rumyantsev, I. B. Vapnyarskiĭ, L. D. Kudryavtsev, M. K. Samarin, I. V. Proskuryakov, V. M. Millionshchikov, N. N. Vil’yams, S. A. Stepanov, S. M. Voronin, I. V. Volovich, D. V. Anosov, D. D. Sokolov, P. K. Suetin, Yu. A. Brychkov, A. P. Prudnikov, A. B. Ivanov, M. I. Voĭtsekhovskiĭ, V. I. Bityutskov, V. A. Chuyanov, G. V. Kuz’mina, H. Maassen, E. D. Solomentsev, E. V. Shikin, A. V. Prokhorov, E. G. D’yakonov, M. V. Fedoryuk, M. A. Shubin, V. T. Bazylev, N. S. Zhavrid, V. V. Okhrimenko, Yu. M. Davydov, B. M. Bredikhin, V. V. Parail, V. I. Danilov, V. M. Mikheev, L. A. Skornyakov, N. G. Ushakov, V. M. Kopytov, T. S. Fofanova, V. A. Zorich, V. L. Popov, Yu. V. Prohorov, V. E. Plisko, V. V. Petrov, V. I. Nechaev, A. A. Bukhshtab, M. S. Nikulin, L. N. Bol’shev, K. I. Oskolkov, B. I. Golubov, V. V. Sazonov, P. S. Aleksandrov, B. S. Kashin, I. A. Vinogradova, B. A. Pasynkov, I. I. Volkov, T. P. Lukashenko, P. M. Gruber, Yu. B. Rudyak, V. A. Iskovskikh, Yu. V. Nesterenko, V. M. Tikhomirov, I. P. Mityuk, A. V. Chernavskiĭ, D. A. Ponomarev, E. G. Goluzina, Ü. Lumiste, A. I. Shtern, A. L. Onishchik, B. A. Rogozin, I. V. Ostrovskiĭ, V. M. Zolotarev, H. C. Myung, Yu. A. Bakhturin, E. B. Vinberg, A. A. Kirillov, V. V. Gorbatsevich, D. V. Alekseevskiĭ, V. P. Platonov, A. I. Kostrikin, A. S. Fedenko, B. R. Vaĭnberg, L. A. Cherkas, Yu. V. Prokhorov, A. I. Galochkin, A. S. Parkhomenko, V. V. Voevodin, A. F. Shapkin, S. G. Kreĭn, V. P. Palamodov, S. A. Aĭvazyan, A. Ya. Khelemskiĭ, A. M. Nakhushev, O. A. Ivanova, S. N. Chernikov, N. N. Ladis, V. G. Karmanov, V. A. Yakubovich, V. I. Arnautov, Yu. A. Rozanov, A. V. Malyshev, I. A. Kvasnikov, A. F. Lavrik, S. V. Kotov, I. Kh. Sabitov, A. V. Efimov, A. P. Ershov, M. Sh. Farber, B. L. Laptev, Kh. D. Ikramov, L. A. Sidorov, I. P. Mysovskikh, N. P. Koreneĭchuk, V. P. Motornyĭ, A. A. Mal’tsev, E. G. Sklyarenko, L. V. Kuz’min, P. T. Johnstone, A. A. Dezin, M. Sh. Tsalenko, A. I. Untern, V. N. Latyshev, A. V. Arkhangel’skiĭ, A. L. Shmel’kin, L. N. Shevrin, S. A. Bogatyĭ, S. Yu. Maslov, G. E. Mints, A. I. Orlov, V. D. Belousov, A. F. Kharshiladze, V. Ya. Gutlyanskiĭ, E. M. Semenov, A. A. Konyushkov, B. A. Efimov, R. Z. Khas’minskiĭ, N. M. Nagornyĭ, V. V. Fedorchuk, B. V. Khvedelidze
Publikováno v:
Encyclopaedia of Mathematics ISBN: 9780792329756
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::91346d0ea5889d49a1cf9df9414cae75
https://doi.org/10.1007/978-1-4899-3793-3_5
https://doi.org/10.1007/978-1-4899-3793-3_5
Autor:
B R Vaĭnberg
Publikováno v:
Mathematics of the USSR-Sbornik. 51:191-206
A complete asymptotic expansion as , , ( arbitrary) is obtained for the spectral function of second order elliptic operators in satisfying the condition of not being "trapped", i.e. the requirement that the bicharacteristics issuing from any point ex
Autor:
B R Vaĭnberg
Publikováno v:
Mathematics of the USSR-Sbornik. 23:123-148
Let , , be a second-order elliptic differential operator coinciding with the Laplace operator in a neighborhood of infinity. Let be the Green's function of the Cauchy problem for the operator . Under certain assumptions regarding the trajectories of
Autor:
B R Vaĭnberg, V V Grušin
Publikováno v:
Mathematics of the USSR-Sbornik. 2:111-133
Autor:
B R Vaĭnberg
Publikováno v:
Mathematics of the USSR-Sbornik. 21:221-239
In this paper elliptic problems in exterior domains polynomially depending on a spectral parameter are considered. These problems are obtained from a mixed problem for hyperbolic equations by substituting for . For such elliptic problems analytic pro
Autor:
B R Vaĭnberg
Publikováno v:
Mathematics of the USSR-Sbornik. 4:419-444
Autor:
B R Vaĭnberg
Publikováno v:
Mathematics of the USSR-Sbornik. 16:307-322
It is well known that the kernel of the resolvent of the operator –Δ+q(x) (q(x) finite) over the whole space, or over the exterior of a bounded domain with homogeneity conditions on the boundary, can be meromorphically continued through the contin