Zobrazeno 1 - 10
of 17
pro vyhledávání: '"B. R. Barmish"'
Autor:
H. I. Kang, B. R. Barmish
Publikováno v:
CONTROL of UNCERTAIN DYNAMIC SYSTEMS ISBN: 9781003067702
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6aff67b1c1292896830abafcd9068192
https://doi.org/10.1201/9781003067702-36
https://doi.org/10.1201/9781003067702-36
Autor:
B. R. Barmish, Romeo Ortega
Publikováno v:
International Journal of Adaptive Control and Signal Processing. 5:251-258
One solves the problem of finding the largest sphere around a linear time-invariant (LTI) stabilizable plant such that all plants of the same order in the sphere are also stabilizable and there exists a plant in its boundary that is not stabilizable.
Autor:
J. Ackermann, B. R. Barmish, S. Dasgupta, M. Fu, C. Hollot, M. Ikeda, H. Kiendl, A. Michalske, M. Mansour, T. Mori, I. R. Petersen, M. Dahleh, B. T. Polyak, L. Qiu, E. J. Davison
Publikováno v:
Robustness of Dynamic Systems with Parameter Uncertainties ISBN: 9783034872706
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c602f5da76d28a5159bf9c5748b8363b
https://doi.org/10.1007/978-3-0348-7268-3_30
https://doi.org/10.1007/978-3-0348-7268-3_30
Autor:
J. E. Ackermann, B. R. Barmish
Publikováno v:
Automatica. 29:5-6
Autor:
B. R. Barmish
Publikováno v:
Journal of Optimization Theory and Applications. 26:379-394
S is taken to be a dynamical system (described by Banach space operators) whose outputy we wish to regulate. The structural complexity ofS (nonlinearities, distributed parameters, etc.) forces us to design a controller forS using an approximate model
Autor:
B. R. Barmish, Ian R. Petersen
Publikováno v:
Systems & Control Letters. 9:417-422
This paper investigates the problem of designing a state feedback control to stabilize an uncertain nonlinear system. We focus attention on the amplitude (norm) of the controller which is used to achieve this end. The uncertain system is described by
Autor:
B. R. Barmish, W. E. Schmitendorf
Publikováno v:
SIAM Journal on Control and Optimization. 18:327-345
The paper considers the problem of steering the state of a linear time-varying system to the origin when the control is subject to magnitude constraints. Necessary and sufficient conditions are given for global constrained controllability as well as
Autor:
W. E. Schmitendorf, B. R. Barmish
Publikováno v:
Journal of Optimization Theory and Applications. 38:525-540
This paper addresses the problem of state controllability in the presence of additive disturbances. In contrast to the stochastic controllability problem, the formulation given here does not require a probabilistic description of the uncertainty. Ins
Autor:
B R Barmish, A R Galimidi
Publikováno v:
Automatica. 22:413-423
Given a dynamical system whose state equations include time-varying uncertain parameters, it is often desirable to design a state feedback controller leading to uniform asymptotic stability of a given equilibrium point. If, however, the controller op
Autor:
B. R. Barmish
Publikováno v:
Journal of Optimization Theory and Applications. 46:399-408
Consider an uncertain system (Σ) described by the equationx(t)=A(r(t))x(t)+B(s(t))u(t), wherex(t) ∈R n is the state,u(t) ∈R m is the control,r(t) ∈ ℛ ⊂R p represents the model parameter uncertainty, ands(t) ∈L ⊂R l represents the input