Zobrazeno 1 - 10
of 99
pro vyhledávání: '"B. P. Duggal"'
Autor:
B. P. Duggal
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2005, Iss 3, Pp 465-474 (2005)
Externí odkaz:
https://doaj.org/article/41ca8ead739e47c2983d9be3dccdac58
Autor:
B. P. Duggal
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 27, Iss 9, Pp 573-582 (2001)
Let ℬ(H) denote the algebra of operators on a Hilbert space H into itself. Let d=δ or Δ, where δAB:ℬ(H)→ℬ(H) is the generalized derivation δAB(S)=AS−SB and ΔAB:ℬ(H)→ℬ(H) is the elementary operator ΔAB(S)=ASB−S. Given A,B,S∈
Externí odkaz:
https://doaj.org/article/ae150c8755304558bdf7042331d9f1e1
Autor:
B. P. Duggal, In Hyoun Kim
Publikováno v:
Operators and Matrices. :197-211
Autor:
B. P. Duggal, I.H. Kim
Publikováno v:
Linear and Multilinear Algebra. :1-11
Autor:
I.H. Kim, B. P. Duggal
Publikováno v:
Rendiconti del Circolo Matematico di Palermo Series 2. 72:341-353
A Hilbert space operator $$T\in B({{{\mathcal {H}}}})$$ is (m, P)-expansive, for some integer $$m\ge 1$$ and positive operator $$P\in B({{{\mathcal {H}}}})$$ , if $$\sum _{j=0}^m{(-1)^j\left( \begin{array}{clcr}m\\ j\end{array}\right) T^{*j}PT^j}\le
Autor:
I.H. Kim, B. P. Duggal
Publikováno v:
Linear and Multilinear Algebra. 70:2264-2277
A Hilbert space operator A ∈ B ( H ) is left ( X , m ) -invertible by B ∈ B ( H ) (resp., B ∈ B ( H ) is an ( X , m ) -adjoint of A ∈ B ( H ) ) for some operator X ∈ B ( H ) if △ B , A m ( X ) = ∑ ...
Autor:
B. P. Duggal, In Hyoun Kim
Publikováno v:
Operators and Matrices. :523-533
A Drazin invertible Hilbert space operator $T\in \B$, with Drazin inverse $T_d$, is $(n,m)$-power D-normal, $T\in [(n,m) DN]$, if $[T_d^n,T^{*m}]=T^n_dT^{*m}-T^{*m}T_d^n=0$; $T$ is $(n,m)$-power D-quasinormal, $T\in [(n,m) DQN]$, if $[T_d^n,T^{*m}T]=
Publikováno v:
Banach Journal of Mathematical Analysis. 14:894-914
In this paper we define and study generalized Kato-meromorphic decomposition and generalized Drazin-meromorphic invertible operators. A bounded linear operator T on a Banach space X is said to be generalized Drazin-meromorphic invertible if there exi
Autor:
B. P. Duggal, In Hyoun Kim
Publikováno v:
Filomat. 34:2797-2803
For $n$-normal operators $A$ [2, 4, 5], equivalently $n$-th roots $A$ of normal Hilbert space operators, both $A$ and $A^*$ satisfy the Bishop--Eschmeier--Putinar property $(\beta)_{\epsilon}$, $A$ is decomposable and the quasi-nilpotent part $H_0(A-
Autor:
Carlos S. Kubrusly, B. P. Duggal
Publikováno v:
Linear and Multilinear Algebra. 69:515-525
A Hilbert space operator S∈B(H) is left m-invertible by T∈B(H) if ∑j=0m(−1)m−jmjTjSj=0, S is m-isometric if ∑j=0m(−1)m−jmjS∗jSj=0 and S is (m,C)-isometric for some conjugation C of H if ∑j=0m(−1)m−...