Zobrazeno 1 - 10
of 12
pro vyhledávání: '"B. Khabibullin"'
Autor:
B. Khabibullin
Publikováno v:
St. Petersburg Mathematical Journal. 34:247-270
Let f f be a meromorphic function on the complex plane with Nevanlinna characteristic T ( r , f ) T(r,f) and maximal radial characteristic ln M ( t , f ) \ln M(t,f) , where M ( t , f ) M(t,f) is the maximum of the modulus | f | |f| on circles cen
Publikováno v:
Lobachevskii Journal of Mathematics. 42:800-810
Let $$D$$ be a domain in the complex plane and $$M$$ be an extended real-valued function on $$D$$ . If $$f$$ is a non-zero holomorphic function on $$D$$ such that $$|f|\leq\exp M$$ , then it is natural to expect that there should be some upper bounde
Publikováno v:
Lobachevskii Journal of Mathematics. 40:648-659
We continue our previous results from the functions of one complex variable in the unit disk to the functions of several variables in the unit ball. Let M be a δ-subharmonic function with Riesz charge µM on the unit ball $$\mathbb{B}$$ in ℂn. Let
Publikováno v:
Functional Analysis and Its Applications. 53:110-123
Let M be a subharmonic function in a domain D ⊂ ℂn with Riesz measure νM, and let Z ⊂ D. As was shown in the first of the preceding papers, if there exists a holomorphic function f ≠ 0 in D such that f(Z) = 0 and |f| ⩽ exp M on D, then one
Publikováno v:
Analysis and Mathematical Physics. 9:1087-1098
Let M be a subharmonic function with Riesz measure $$\mu _M$$ on the unit disk $${\mathbb {D}}$$ in the complex plane $${\mathbb {C}}$$ . Let f be a nonzero holomorphic function on $${\mathbb {D}}$$ such that f vanishes on $${\textsf {Z}}\subset {\ma
Publikováno v:
Функциональный анализ и его приложения. 53:42-58
Пусть $M$ - субгармоническая функции в области $D\subset \mathbb C^n$ с мерой Рисса $\nu_M$, ${\mathsf Z}\subset D$. Как было показано в первой из предшествующих с
Publikováno v:
Vestnik Volgogradskogo gosudarstvennogo universiteta. Serija 1. Mathematica. Physica. :108-115
Publikováno v:
St. Petersburg Mathematical Journal. 26:319-340
Let > 0. The symbol B 1 denotes the space of all entire functions of exponential type not exceeding that are bounded on the real axis. Various exact descriptions of uniqueness sequences for the Bernstein spaces B 1 are given in terms of and the Poiss
Publikováno v:
St. Petersburg Mathematical Journal. 20:131-162