Zobrazeno 1 - 10
of 16
pro vyhledávání: '"B. J. Venkatachala"'
Autor:
B. J. Venkatachala
Publikováno v:
Texts and Readings in Mathematics ISBN: 9789811087325
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::23d30bd4f9f0b272c2f173c0046c7c8d
https://doi.org/10.1007/978-981-10-8732-5
https://doi.org/10.1007/978-981-10-8732-5
Autor:
B. J. Venkatachala
Publikováno v:
Texts and Readings in Mathematics ISBN: 9789811087325
Inequalities ISBN: 9788185931883
Inequalities ISBN: 9788185931883
There are several standard ways of proving a given inequality. We have already seen how to obtain the AM-GM inequality using forward and backward induction. One can also use the known standard inequalities or use ideas from calculus. In some cases tr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::27e8ef6cdee1b8544b1af83013933272
https://doi.org/10.1007/978-981-10-8732-5_2
https://doi.org/10.1007/978-981-10-8732-5_2
Autor:
B. J. Venkatachala
Publikováno v:
Texts and Readings in Mathematics ISBN: 9789811087325
Inequalities ISBN: 9788185931883
Inequalities ISBN: 9788185931883
As we all know, one of the important properties of real numbers is comparability. We can compare two distinct real numbers and say that one is smaller or larger than the other. There is an inherent ordering < on the real number system ℝ which helps
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6fa31b2a18d2e381c20382a61bb1da58
https://doi.org/10.1007/978-981-10-8732-5_1
https://doi.org/10.1007/978-981-10-8732-5_1
Publikováno v:
Resonance. 2:91-94
Autor:
B. J. Venkatachala
Publikováno v:
Inequalities ISBN: 9788185931883
Texts and Readings in Mathematics ISBN: 9789811087325
Texts and Readings in Mathematics ISBN: 9789811087325
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a629911684dd0ceab6c7b96099c630e8
https://doi.org/10.1007/978-93-86279-43-9_3
https://doi.org/10.1007/978-93-86279-43-9_3
Autor:
B. J. Venkatachala
Publikováno v:
Inequalities ISBN: 9788185931883
Texts and Readings in Mathematics ISBN: 9789811087325
Texts and Readings in Mathematics ISBN: 9789811087325
Some problems, though not direct inequality problems, use inequalities in their solutions. This is the case when the problems on maximisation and minimisation are considered. Inequalities are also useful in solving some Diophantine equations by way o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::460fae6aa1b60560dfbf53a3a3ed70eb
https://doi.org/10.1007/978-93-86279-43-9_4
https://doi.org/10.1007/978-93-86279-43-9_4
Autor:
B. J. Venkatachala
Publikováno v:
Inequalities ISBN: 9788185931883
Texts and Readings in Mathematics ISBN: 9789811087325
Texts and Readings in Mathematics ISBN: 9789811087325
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::519e14c30b4029061415466069009947
https://doi.org/10.1007/978-93-86279-43-9_6
https://doi.org/10.1007/978-93-86279-43-9_6
Autor:
B. J. Venkatachala
Publikováno v:
Inequalities ISBN: 9788185931883
Texts and Readings in Mathematics ISBN: 9789811087325
Texts and Readings in Mathematics ISBN: 9789811087325
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::404e41059c6c8f7a8c5d481723ef7ba2
https://doi.org/10.1007/978-93-86279-43-9_5
https://doi.org/10.1007/978-93-86279-43-9_5
Autor:
B. J. Venkatachala, Doyle Henderson
Publikováno v:
The American Mathematical Monthly. 110:243
Solution by Doyle Henderson, Omaha, NE. The only possibilities for m are 0, 1, 2, 3, and 5. Simple calculations then show the solution set for (m, n) to be {(0, 0), (1, 1), (2, 2), (5, 11)1}. Suppose there is a solution with m even and at least 4. Le