Zobrazeno 1 - 10
of 740
pro vyhledávání: '"B. Csapo"'
Autor:
Zevenbergen, Robyn
Publikováno v:
British Educational Research Journal, 2002 Apr 01. 28(2), 301-302.
Externí odkaz:
https://www.jstor.org/stable/1501984
Autor:
Tarek Setti, Adam B. Csapo
Publikováno v:
Frontiers in Computer Science, Vol 3 (2021)
Virtual reality (VR) is a powerful technological framework that can be considered as comprising any kind of device that allows for 3D environments to be simulated and interacted with via a digital interface. Depending on the specific technologies use
Externí odkaz:
https://doaj.org/article/4a2a4d38e69f4e8793fce486936962c4
Autor:
Adam B. Csapo
Publikováno v:
Complexity, Vol 2018 (2018)
The Spiral Discovery Method (SDM) was originally proposed as a cognitive artifact for dealing with black-box models that are dependent on multiple inputs with nonlinear and/or multiplicative interaction effects. Besides directly helping to identify f
Externí odkaz:
https://doaj.org/article/215f449462e0408f815c8bdd0f346b7c
Autor:
Gyorgy Persa, Adam B. Csapo
Publikováno v:
2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo).
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kozulin, Alex *
Publikováno v:
In Learning and Instruction 2001 10 Supplement 1:33-35
Autor:
Tarek Setti, Adam B. Csapo
Publikováno v:
2022 IEEE 1st International Conference on Internet of Digital Reality (IoD).
Autor:
M-T Weiser-Fuchs, E Maggauer, B Csapo, H Köfeler, M van Poppel, B Obermayer-Pietsch, H Fluhr, E Jantscher-Krenn
Publikováno v:
Geburtshilfe und Frauenheilkunde.
Autor:
Tarek Setti, Adam B. Csapo
Publikováno v:
2022 1st IEEE International Conference on Cognitive Aspects of Virtual Reality (CVR).
Autor:
Adam B. Csapo
Publikováno v:
2020 2nd IEEE International Conference on Gridding and Polytope Based Modelling and Control (GPMC).
This paper presents an approach for creating tensor product (TP) models based on sparse or non-uniform samples representing arbitrary datasets, and for manipulating the resulting TP structure to further identify the models behind the datasets. Given