Zobrazeno 1 - 8
of 8
pro vyhledávání: '"B. Cooper Boniece"'
Autor:
B. Cooper Boniece, Gustavo Didier
Publikováno v:
Advances in Applied Probability. 54:493-535
In this paper, we construct operator fractional Lévy motion (ofLm), a broad class of infinitely divisible stochastic processes that are covariance operator self-similar and have wide-sense stationary increments. The ofLm class generalizes the univar
Publikováno v:
Journal of Statistical Physics. 178:954-985
We define two new classes of stochastic processes, called tempered fractional Levy process of the first and second kinds (TFLP and TFLP II, respectively). TFLP and TFLP II make up very broad finite-variance, generally non-Gaussian families of transie
Publikováno v:
Statistical Inference for Stochastic Processes
Statistical Inference for Stochastic Processes, 2022, pp.1-33. ⟨10.1007/s11203-022-09279-3⟩
Statistical Inference for Stochastic Processes, 2022, pp.1-33. ⟨10.1007/s11203-022-09279-3⟩
In this paper, we construct the wavelet eigenvalue regression methodology in high dimensions. We assume that possibly non-Gaussian, finite-variance $p$-variate measurements are made of a low-dimensional $r$-variate ($r \ll p$) fractional stochastic p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::46ca388fbc71636e96f2950196680602
https://hal.science/hal-03850430/file/2108.03770.pdf
https://hal.science/hal-03850430/file/2108.03770.pdf
Publikováno v:
Proceedings of CAMSAP 2019
IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2019)
IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2019), IEEE, Dec 2019, Guadeloupe, France. ⟨10.1109/CAMSAP45676.2019.9022442⟩
CAMSAP
IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2019)
IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2019), IEEE, Dec 2019, Guadeloupe, France. ⟨10.1109/CAMSAP45676.2019.9022442⟩
CAMSAP
International audience; In the modern world, systems are routinely monitored by multiple sensors, generating "Big Data" in the form of a large collection of time series. However, dynamic signals are often low-dimensional and characterized by joint sc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f30d249d7ba01a7aa8d10525ee9bdf94
https://hal-cnrs.archives-ouvertes.fr/hal-03034138
https://hal-cnrs.archives-ouvertes.fr/hal-03034138
Publikováno v:
European Signal Processing Conference (EUSIPCO)
European Signal Processing Conference (EUSIPCO), Sep 2019, A Coruna, Spain
EUSIPCO
European Signal Processing Conference (EUSIPCO), Sep 2019, A Coruna, Spain
EUSIPCO
International audience; In the modern world of "Big Data," dynamic signals are often multivariate and characterized by joint scale-free dynamics (self-similarity) and non-Gaussianity. In this paper, we examine the performance of joint wavelet eigenan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::908884b5fbbdcc3970035b4dfdad5883
https://hal.science/hal-02361748/document
https://hal.science/hal-02361748/document
The Davenport spectrum is a modification of the classical Kolmogorov spectrum for the inertial range of turbulence that accounts for non-scaling low frequency behavior. Like the classical fractional Brownian motion vis-\`a-vis the Kolmogorov spectrum
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d1c6948f41e872a303d15b6eb18e3297
http://arxiv.org/abs/1808.04935
http://arxiv.org/abs/1808.04935
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.