Zobrazeno 1 - 10
of 185
pro vyhledávání: '"B. Brunel"'
Publikováno v:
Entropy, Vol 25, Iss 3, p 489 (2023)
Partial differential equations are common models in biology for predicting and explaining complex behaviors. Nevertheless, deriving the equations and estimating the corresponding parameters remains challenging from data. In particular, the fine descr
Externí odkaz:
https://doaj.org/article/8740942a8e2f4000a9540229084f48a0
Publikováno v:
Acta Horticulturae. :1-8
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Nicolas J.-B. Brunel, Quentin Clairon
Publikováno v:
Journal of the American Statistical Association
Journal of the American Statistical Association, Taylor & Francis, In press, 113 (523), pp.1195-1209. ⟨10.1080/01621459.2017.1319841⟩
Journal of the American Statistical Association, Taylor & Francis, In press, 113 (523), pp.1195-1209. ⟨10.1080/01621459.2017.1319841⟩
Ordinary differential equations (ODE) are routinely calibrated on real data for estimating unknown parameters or for reverse-engineering. Nevertheless, standard statistical techniques can give disappointing results because of the complex relationship
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
European Heart Journal. 40
Background Blood pressure (BP) control is critical in delaying the progression of chronic kidney disease (CKD), which otherwise results in an increased risk of cardiovascular morbidity and mortality. Angiotensin II receptor blockers (ARBs) or angiote
Autor:
Juhyun Park, Nicolas J.-B. Brunel
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030269791
GSI
GSI
Variations of the curves and trajectories in 1D can be analysed efficiently with functional data analysis tools. The main sources of variations in 1D curves have been identified as amplitude and phase variations. Dealing with the latter gives rise to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::88c83815fdca7a7d7cc5de16827d9bd6
https://doi.org/10.1007/978-3-030-26980-7_63
https://doi.org/10.1007/978-3-030-26980-7_63
Autor:
Quentin Clairon, Nicolas J.-B. Brunel
Publikováno v:
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference, Elsevier, 2019, 199, pp.188-206. ⟨10.1016/j.jspi.2018.06.005⟩
Journal of Statistical Planning and Inference, Elsevier, 2019, 199, pp.188-206. ⟨10.1016/j.jspi.2018.06.005⟩
We address the problem of parameter estimation for partially observed linear Ordinary Differential Equations. Estimation from time series with standard estimators can give misleading results because estimation is often ill-posed, or the models are mi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e95fbbf6a43baf79b3c6142e0f39184e
https://hal.archives-ouvertes.fr/hal-03212218
https://hal.archives-ouvertes.fr/hal-03212218
Publikováno v:
Physica A: Statistical Mechanics and its Applications
Physica A: Statistical Mechanics and its Applications, Elsevier, 2018, 506, pp.290-304. ⟨10.1016/j.physa.2018.04.058⟩
Physica A: Statistical Mechanics and its Applications, 2018, 506, pp.290-304. ⟨10.1016/j.physa.2018.04.058⟩
Physica A: Statistical Mechanics and its Applications, Elsevier, 2018, 506, pp.290-304. ⟨10.1016/j.physa.2018.04.058⟩
Physica A: Statistical Mechanics and its Applications, 2018, 506, pp.290-304. ⟨10.1016/j.physa.2018.04.058⟩
Although it has been experimentally reported that speed variations is the optimal way of optimizing his pace for achieving a given distance in a minimal time, we still do not know what the optimal speed variations (i.e. accelerations) are. At first,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ff60f9cb87e638961e2b1407c088492
https://hal.archives-ouvertes.fr/hal-01965678
https://hal.archives-ouvertes.fr/hal-01965678