Zobrazeno 1 - 7
of 7
pro vyhledávání: '"B. A. Vega-Westhoff"'
Publikováno v:
Earth System Dynamics, Vol 10, Pp 729-739 (2019)
Simple climate models (SCMs) are numerical representations of the Earth's gas cycles and climate system. SCMs are easy to use and computationally inexpensive, making them an ideal tool in both scientific and decision-making contexts (e.g., complex cl
Externí odkaz:
https://doaj.org/article/23105cd4715a4354ba2481dadc69421d
Publikováno v:
Earth's Future, Vol 7, Iss 6, Pp 677-690 (2019)
Reduced complexity climate models are useful tools for quantifying decision‐relevant uncertainties, given their flexibility, computational efficiency, and suitability for large‐ensemble frameworks necessary for statistical estimation using resamp
Publikováno v:
Earth and Space Science. 6:212-221
Publikováno v:
Geophysical Research Letters. 47
Autor:
Ryan L. Sriver, B. A. Vega-Westhoff
Publikováno v:
Scientific Reports
Scientific Reports, Vol 7, Iss 1, Pp 1-10 (2017)
Scientific Reports, Vol 7, Iss 1, Pp 1-10 (2017)
Understanding how the El Niño-Southern Oscillation (ENSO) may change with climate is a major challenge, given the internal variability of the system and relatively short observational record. Here we analyze the effect of coupled internal variabilit
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ross J. Salawitch, Robert Gieseke, Thomas Gasser, Xuanming Su, Malte Meinshausen, B. A. Vega-Westhoff, L. McBride, Zebedee Nicholls, Nicholas J. Leach, Marit Sandstad, Alexey N. Shiklomanov, Joeri Rogelj, Kalyn Dorheim, D. L. Woodard, Steven J. Smith, M. Rojas Corradi, Ragnhild Bieltvedt Skeie, Christopher J. Smith, Yann Quilcaille, Jared Lewis, Junichi Tsutsui, Bjørn Hallvard Samset, Austin P. Hope
Publikováno v:
Earth's Future
Earth's Future, Vol 9, Iss 6, Pp n/a-n/a (2021)
Earth's Future, Vol 9, Iss 6, Pp n/a-n/a (2021)
Over the last decades, climate science has evolved rapidly across multiple expert domains. Our best tools to capture state‐of‐the‐art knowledge in an internally self‐consistent modeling framework are the increasingly complex fully coupled Ear