Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Böckenhauer J"'
Autor:
Böckenhauer, J., Evans, D. E.
In this lecture we explain the intimate relationship between modular invariants in conformal field theory and braided subfactors in operator algebras. Our analysis is based on an approach to modular invariants using braided sector induction ("$\alpha
Externí odkaz:
http://arxiv.org/abs/math/0008056
Autor:
Böckenhauer, J., Evans, D. E.
In these lectures we explain the intimate relationship between modular invariants in conformal field theory and braided subfactors in operator algebras. A subfactor with a braiding determines a matrix $Z$ which is obtained as a coupling matrix compar
Externí odkaz:
http://arxiv.org/abs/math/0006114
We study (dual) Longo-Rehren subfactors $M\otimes M^{opp} \subset R$ arising from various systems of endomorphisms of M obtained from alpha-induction for some braided subfactor $N\subset M$. Our analysis provides useful tools to determine the systems
Externí odkaz:
http://arxiv.org/abs/math/0002154
Autor:
Böckenhauer, J., Evans, D. E.
A braided subfactor determines a coupling matrix Z which commutes with the S- and T-matrices arising from the braiding. Such a coupling matrix is not necessarily of "type I", i.e. in general it does not have a block-diagonal structure which can be re
Externí odkaz:
http://arxiv.org/abs/math/9911239
Publikováno v:
Commun.Math.Phys. 210 (2000) 733-784
In this paper we further analyze modular invariants for subfactors, in particular the structure of the chiral induced systems of M-M morphisms. The relative braiding between the chiral systems restricts to a proper braiding on their ``ambichiral'' in
Externí odkaz:
http://arxiv.org/abs/math/9907149
Publikováno v:
Commun.Math.Phys. 208 (1999) 429-487
We consider a type III subfactor $N\subset M$ of finite index with a finite system of braided $N$-$N$ morphisms which includes the irreducible constituents of the dual canonical endomorphism. We apply $\alpha$-induction and, developing further some i
Externí odkaz:
http://arxiv.org/abs/math/9904109
Autor:
Böckenhauer, J., Evans, D. E.
Publikováno v:
Commun.Math.Phys. 205 (1999) 183-228
In this paper we further develop the theory of $\alpha$-induction for nets of subfactors, in particular in view of the system of sectors obtained by mixing the two kinds of induction arising from the two choices of braiding. We construct a relative b
Externí odkaz:
http://arxiv.org/abs/hep-th/9812110
Autor:
Böckenhauer, J.
Publikováno v:
Rev.Math.Phys. 8 (1996) 925-948
The highest weight modules of the chiral algebra of orthogonal WZW models at level one possess a realization in fermionic representation spaces; the Kac-Moody and Virasoro generators are represented as unbounded limits of even CAR algebras. It is sho
Externí odkaz:
http://arxiv.org/abs/hep-th/9507047
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.