Zobrazeno 1 - 10
of 192
pro vyhledávání: '"Bégout P"'
Autor:
Bégout, Pascal, Díaz, Jesús Ildefonso
Publikováno v:
Journal of Mathematical Analysis and Applications, 2024, 538 (1), pp.128329
We consider the damped nonlinear Schr\''{o}dinger equation with saturation: i.e., the complex evolution equation contains in its left hand side, besides the potential term $V(x)u,$ a nonlinear term of the form $\mathrm{i}\mu u(t,x)/|u(t,x)|$ for a gi
Externí odkaz:
http://arxiv.org/abs/2404.06811
Autor:
Bégout, Pascal, Díaz, Jesús Ildefonso
Publikováno v:
Advances in Differential Equations, 2023, 28 (3-4), pp.311-340
This paper completes some previous studies by several authors on the finite time extinction for nonlinear Schr{\"o}dinger equation when the nonlinear damping term corresponds to the limit cases of some ``saturating non-Kerr law'' $F(|u|^2)u=\frac{a}{
Externí odkaz:
http://arxiv.org/abs/2210.04493
Autor:
Bégout, Pascal
Publikováno v:
Advances in Mathematical Sciences and Applications, 2022, 31 (2), pp.241-252
Solutions of some partial differential equations are obtained as critical points of a real funtional. Then the Banach space where this functional is defined has to be real, otherwise, it is not differentiable. It follows that the equation is solved w
Externí odkaz:
http://arxiv.org/abs/2206.09630
Autor:
Bégout, Pascal, Díaz, Jesús Ildefonso
Publikováno v:
Journal of Differential Equations, 2022, 308, pp.252-285
We present some sharper finite extinction time results for solutions of a class of damped nonlinear Schr{\"o}dinger equations when the nonlinear damping term corresponds to the limit cases of some ``saturating non-Kerr law'' $F(|u|^2)u=\frac{a}{\vare
Externí odkaz:
http://arxiv.org/abs/2111.10136
Autor:
Bégout, Pascal, Schindler, Ian
Publikováno v:
Revista de la Real Academia de Ciencias Exactas, F{\'i}sicas y Naturales - Serie A. Matem{\'a}ticas, Springer, 2021, 115 (2), pp.72
We prove existence results for a stationary Schr{\"o}dinger equation with periodic magnetic potential satisfying a local integrability condition on the whole space using a critical value function.
Externí odkaz:
http://arxiv.org/abs/2103.10735
Autor:
Bégout, Pascal
Publikováno v:
Electronic Journal of Differential Equations, Texas State University, Department of Mathematics, 2020, 2020 (39), pp.1-18
We consider a nonlinear Schr{\"o}dinger equation set in the whole space with a single power of interaction and an external source. We first establish existence and uniqueness of the solutions and then show, in low space dimension, that the solutions
Externí odkaz:
http://arxiv.org/abs/2005.01471
Finite time extinction for the strongly damped nonlinear Schr{\'o}dinger equation in bounded domains
Autor:
Bégout, Pascal, Díaz, Jesús Ildefonso
Publikováno v:
Journal of Differential Equations, Elsevier, 2020, 268 (7), pp.4029-4058
We prove the \textit{finite time extinction property} $(u(t)\equiv 0$ on $\Omega$ for any $t\ge T_\star,$ for some $T_\star>0)$ for solutions of the nonlinear Schr\"{o}dinger problem ${\rm i} u_t+\Delta u+a|u|^{-(1-m)}u=f(t,x),$ on a bounded domain $
Externí odkaz:
http://arxiv.org/abs/2003.08105
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Frontiers in Marine Science, Vol 10 (2023)
Predator-prey interactions and, especially, the success of anti-predator responses are modulated by the sensory channels of vision, olfaction, audition and mechanosensation. If climate change alters fish sensory ability to avoid predation, community
Externí odkaz:
https://doaj.org/article/a26d5c6ddbaa4d3789f2381442f4b7e8
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.